Help Me Understand Genetics

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services

Published July 9, 2019
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells and DNA</td>
<td>4</td>
</tr>
<tr>
<td>Cells, genes, and chromosomes</td>
<td></td>
</tr>
<tr>
<td>Mutations and Health</td>
<td>21</td>
</tr>
<tr>
<td>Gene mutations, chromosomal changes, and conditions that run in families</td>
<td></td>
</tr>
<tr>
<td>How Genes Work</td>
<td>66</td>
</tr>
<tr>
<td>Proteins, cell growth, and cell division</td>
<td></td>
</tr>
<tr>
<td>Gene Groups</td>
<td>89</td>
</tr>
<tr>
<td>Groups of genes that share important characteristics</td>
<td></td>
</tr>
<tr>
<td>Inheriting Genetic Conditions</td>
<td>115</td>
</tr>
<tr>
<td>Inheritance patterns and understanding risk</td>
<td></td>
</tr>
<tr>
<td>Genetics and Human Traits</td>
<td>145</td>
</tr>
<tr>
<td>How genes influence various human characteristics</td>
<td></td>
</tr>
<tr>
<td>Genetic Consultation</td>
<td>178</td>
</tr>
<tr>
<td>Finding and visiting a genetic counselor or other genetics professional</td>
<td></td>
</tr>
<tr>
<td>Genetic Testing</td>
<td>193</td>
</tr>
<tr>
<td>Benefits, costs, risks, and limitations of genetic testing</td>
<td></td>
</tr>
<tr>
<td>Direct-to-Consumer Genetic Testing</td>
<td>225</td>
</tr>
<tr>
<td>Testing genetic variations to make predictions about health, provide information about common traits, and offer clues about a person’s ancestry</td>
<td></td>
</tr>
<tr>
<td>Newborn Screening</td>
<td>258</td>
</tr>
<tr>
<td>Testing all babies in their first days of life for certain disorders and conditions</td>
<td></td>
</tr>
<tr>
<td>Gene Therapy</td>
<td>270</td>
</tr>
<tr>
<td>Experimental techniques, safety, ethics, and availability</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>The Human Genome Project</td>
<td>278</td>
</tr>
<tr>
<td>Sequencing and understanding</td>
<td></td>
</tr>
<tr>
<td>the human genome</td>
<td></td>
</tr>
<tr>
<td>Genomic Research</td>
<td>284</td>
</tr>
<tr>
<td>Next steps in studying the</td>
<td></td>
</tr>
<tr>
<td>human genome</td>
<td></td>
</tr>
<tr>
<td>Precision Medicine</td>
<td>298</td>
</tr>
<tr>
<td>Disease treatment and</td>
<td></td>
</tr>
<tr>
<td>prevention strategies</td>
<td></td>
</tr>
<tr>
<td>tailored to variability in</td>
<td></td>
</tr>
<tr>
<td>genes, environment, and</td>
<td></td>
</tr>
<tr>
<td>lifestyle</td>
<td></td>
</tr>
</tbody>
</table>
Cells and DNA

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is a cell?</td>
<td>5</td>
</tr>
<tr>
<td>What is DNA?</td>
<td>10</td>
</tr>
<tr>
<td>What is a gene?</td>
<td>13</td>
</tr>
<tr>
<td>What is a chromosome?</td>
<td>15</td>
</tr>
<tr>
<td>How many chromosomes do people have?</td>
<td>17</td>
</tr>
<tr>
<td>What is noncoding DNA?</td>
<td>18</td>
</tr>
</tbody>
</table>
What is a cell?

Cells are the basic building blocks of all living things. The human body is composed of trillions of cells. They provide structure for the body, take in nutrients from food, convert those nutrients into energy, and carry out specialized functions. Cells also contain the body’s hereditary material and can make copies of themselves.

Cells have many parts, each with a different function. Some of these parts, called organelles, are specialized structures that perform certain tasks within the cell. Human cells contain the following major parts, listed in alphabetical order:

Cytoplasm

Within cells, the cytoplasm (image on page 7) is made up of a jelly-like fluid (called the cytosol) and other structures that surround the nucleus.

Cytoskeleton

The cytoskeleton is a network of long fibers that make up the cell’s structural framework. The cytoskeleton has several critical functions, including determining cell shape, participating in cell division, and allowing cells to move. It also provides a track-like system that directs the movement of organelles and other substances within cells.

Endoplasmic reticulum (ER)

This organelle helps process molecules created by the cell. The endoplasmic reticulum (image on page 7) also transports these molecules to their specific destinations either inside or outside the cell.

Golgi apparatus

The Golgi apparatus (image on page 8) packages molecules processed by the endoplasmic reticulum to be transported out of the cell.

Lysosomes and peroxisomes

These organelles (image on page 8) are the recycling center of the cell. They digest foreign bacteria that invade the cell, rid the cell of toxic substances, and recycle worn-out cell components.

Mitochondria

Mitochondria (image on page 8) are complex organelles that convert energy from food into a form that the cell can use. They have their own genetic material, separate from the DNA in the nucleus, and can make copies of themselves.
Nucleus

The nucleus (image on page 9) serves as the cell’s command center, sending directions to the cell to grow, mature, divide, or die. It also houses DNA (deoxyribonucleic acid), the cell’s hereditary material. The nucleus is surrounded by a membrane called the nuclear envelope, which protects the DNA and separates the nucleus from the rest of the cell.

Plasma membrane

The plasma membrane (image on page 9) is the outer lining of the cell. It separates the cell from its environment and allows materials to enter and leave the cell.

Ribosomes

Ribosomes (image on page 9) are organelles that process the cell’s genetic instructions to create proteins. These organelles can float freely in the cytoplasm or be connected to the endoplasmic reticulum (see above).

For more information about cells:

The National Institute of General Medical Sciences has a science education booklet about cells called Inside the Cell (https://www.nigms.nih.gov/education/Booklets/Inside-the-Cell/Pages/Home.aspx).

The Genetic Science Learning Center at the University of Utah offers an interactive introduction to cells (https://learn.genetics.utah.edu/content/cells/insideacell/) and their many functions.

Arizona State University’s "Ask a Biologist" provides a description and illustration of each of the cell’s organelles (https://askabiologist.asu.edu/cell-parts).

Queen Mary University of London allows you to explore a 3-D cell and its parts (https://www.centreofthecell.org/learn-play/games/explore-a-cell/).

Additional information about the cytoskeleton, including an illustration, is available from the Cytoplasm Tutorial (http://www.biology.arizona.edu/Cell_bio/tutorials/cytoskeleton/page1.html). This resource is part of The Biology Project at the University of Arizona.
The cytoplasm surrounds the cell’s nucleus and organelles.

The endoplasmic reticulum is involved in molecule processing and transport.
The Golgi apparatus is involved in packaging molecules for export from the cell.

Lysosomes and peroxisomes destroy toxic substances and recycle worn-out cell parts.

Mitochondria provide the cell's energy.
The nucleus contains most of the cell's genetic material.

The plasma membrane is the outer covering around the cell.

Ribosomes use the cell's genetic instructions to make proteins.
What is DNA?

DNA, or deoxyribonucleic acid, is the hereditary material in humans and almost all other organisms. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA). Mitochondria (image on page 8) are structures within cells that convert the energy from food into a form that cells can use.

The information in DNA is stored as a code made up of four chemical bases: adenine (A), guanine (G), cytosine (C), and thymine (T). Human DNA consists of about 3 billion bases, and more than 99 percent of those bases are the same in all people. The order, or sequence, of these bases determines the information available for building and maintaining an organism, similar to the way in which letters of the alphabet appear in a certain order to form words and sentences.

DNA bases pair up with each other, A with T and C with G, to form units called base pairs. Each base is also attached to a sugar molecule and a phosphate molecule. Together, a base, sugar, and phosphate are called a nucleotide. Nucleotides are arranged in two long strands that form a spiral called a double helix. The structure of the double helix is somewhat like a ladder, with the base pairs forming the ladder’s rungs and the sugar and phosphate molecules forming the vertical sidepieces of the ladder.

An important property of DNA is that it can replicate, or make copies of itself. Each strand of DNA in the double helix can serve as a pattern for duplicating the sequence of bases. This is critical when cells divide because each new cell needs to have an exact copy of the DNA present in the old cell.
DNA is a double helix formed by base pairs attached to a sugar-phosphate backbone.

For more information about DNA:

The National Human Genome Research Institute fact sheet Deoxyribonucleic Acid (DNA) (https://www.genome.gov/about-genomics/fact-sheets/Deoxyribonucleic-Acid-Fact-Sheet) provides an introduction to this molecule.

StatedClearly offers a video introduction to DNA and how it works (http://statedclearly.com/videos/what-is-dna/).

The New Genetics, a publication of the National Institute of General Medical Sciences, discusses the structure of DNA and how it was discovered (https://www.nigms.nih.gov/education/Booklets/the-new-genetics/Pages/Home.aspx).

A basic explanation and illustration of DNA (https://askabiologist.asu.edu/dna-shape-and-structure) can be found on Arizona State University's "Ask a Biologist" website.
The Virtual Genetics Education Centre, created by the University of Leicester, offers additional information on DNA, genes, and chromosomes (https://www2.le.ac.uk/projects/vgec/highereducation/topics/dna-genes-chromosomes).

An overview of mitochondrial DNA (https://neuromuscular.wustl.edu/mitosyn.html#general) is available from the Neuromuscular Disease Center at Washington University.
What is a gene?

A gene is the basic physical and functional unit of heredity. Genes are made up of DNA. Some genes act as instructions on page 74 to make molecules called proteins. However, many genes do not code for proteins on page 18. In humans, genes vary in size from a few hundred DNA bases to more than 2 million bases. The Human Genome Project on page 280 estimated that humans have between 20,000 and 25,000 genes.

Every person has two copies of each gene, one inherited from each parent. Most genes are the same in all people, but a small number of genes (less than 1 percent of the total) are slightly different between people. Alleles are forms of the same gene with small differences in their sequence of DNA bases. These small differences contribute to each person’s unique physical features.

Scientists keep track of genes by giving them unique names. Because gene names can be long, genes are also assigned symbols, which are short combinations of letters (and sometimes numbers) that represent an abbreviated version of the gene name. For example, a gene on chromosome 7 that has been associated with cystic fibrosis is called the cystic fibrosis transmembrane conductance regulator; its symbol is CFTR.

Genes are made up of DNA. Each chromosome contains many genes.

For more information about genes:

More information about how genetic conditions and genes are named on page 64 is also available from Genetics Home Reference.

The Tech Museum of Innovation at Stanford University describes genes and how they were discovered (https://genetics.thetech.org/about-genetics/what-gene).

The Virtual Genetics Education Centre, created by the University of Leicester, offers additional information on DNA, genes, and chromosomes (https://www2.le.ac.uk/projects/vgec/highereducation/topics/dna-genes-chromosomes).
What is a chromosome?

In the nucleus of each cell, the DNA molecule is packaged into thread-like structures called chromosomes. Each chromosome is made up of DNA tightly coiled many times around proteins called histones that support its structure.

Chromosomes are not visible in the cell’s nucleus—not even under a microscope—when the cell is not dividing. However, the DNA that makes up chromosomes becomes more tightly packed during cell division and is then visible under a microscope. Most of what researchers know about chromosomes was learned by observing chromosomes during cell division.

Each chromosome has a constriction point called the centromere, which divides the chromosome into two sections, or “arms.” The short arm of the chromosome is labeled the “p arm.” The long arm of the chromosome is labeled the “q arm.” The location of the centromere on each chromosome gives the chromosome its characteristic shape, and can be used to help describe the location of specific genes.

DNA and histone proteins are packaged into structures called chromosomes.
For more information about chromosomes:

A basic introduction to chromosomes (https://www.genome.gov/about-genomics/fact-sheets/Chromosomes-Fact-Sheet) is available from the National Human Genome Research Institute.

The University of Utah’s Genetic Science Learning Center offers a description of chromosomes (https://learn.genetics.utah.edu/content/basics/readchromosomes/), including how scientists tell them apart.
How many chromosomes do people have?

In humans, each cell normally contains 23 pairs of chromosomes, for a total of 46. Twenty-two of these pairs, called autosomes, look the same in both males and females. The 23rd pair, the sex chromosomes, differ between males and females. Females have two copies of the X chromosome, while males have one X and one Y chromosome.

The 22 autosomes are numbered by size. The other two chromosomes, X and Y, are the sex chromosomes. This picture of the human chromosomes lined up in pairs is called a karyotype.

For more information about the 23 pairs of human chromosomes:

The University of Utah's Genetic Science Learning Center discusses how karyotypes can be used in diagnosing genetic disorders (https://learn.genetics.utah.edu/content/basics/diagnose/).

Arizona State University's "Ask a Biologist" discusses the inheritance of human chromosomes. (https://askabiologist.asu.edu/chromosomes-and-genes)
What is noncoding DNA?

Only about 1 percent of DNA is made up of protein-coding genes; the other 99 percent is noncoding. Noncoding DNA does not provide instructions for making proteins. Scientists once thought noncoding DNA was “junk,” with no known purpose. However, it is becoming clear that at least some of it is integral to the function of cells, particularly the control of gene activity. For example, noncoding DNA contains sequences that act as regulatory elements, determining when and where genes are turned on and off. Such elements provide sites for specialized proteins (called transcription factors) to attach (bind) and either activate or repress the process by which the information from genes is turned into proteins (transcription). Noncoding DNA contains many types of regulatory elements:

- Promoters provide binding sites for the protein machinery that carries out transcription. Promoters are typically found just ahead of the gene on the DNA strand.
- Enhancers provide binding sites for proteins that help activate transcription. Enhancers can be found on the DNA strand before or after the gene they control, sometimes far away.
- Silencers provide binding sites for proteins that repress transcription. Like enhancers, silencers can be found before or after the gene they control and can be some distance away on the DNA strand.
- Insulators provide binding sites for proteins that control transcription in a number of ways. Some prevent enhancers from aiding in transcription (enhancer-blocker insulators). Others prevent structural changes in the DNA that repress gene activity (barrier insulators). Some insulators can function as both an enhancer blocker and a barrier.

Other regions of noncoding DNA provide instructions for the formation of certain kinds of RNA molecules. RNA is a chemical cousin of DNA. Examples of specialized RNA molecules produced from noncoding DNA include transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), which help assemble protein building blocks (amino acids) into a chain that forms a protein; microRNAs (miRNAs), which are short lengths of RNA that block the process of protein production; and long noncoding RNAs (lncRNAs), which are longer lengths of RNA that have diverse roles in regulating gene activity.

Some structural elements of chromosomes are also part of noncoding DNA. For example, repeated noncoding DNA sequences at the ends of chromosomes form telomeres. Telomeres protect the ends of chromosomes from being degraded during the copying of genetic material. Repetitive noncoding DNA sequences also form satellite DNA, which is a part of other structural elements.
Satellite DNA is the basis of the centromere, which is the constriction point of the X-shaped chromosome pair. Satellite DNA also forms heterochromatin, which is densely packed DNA that is important for controlling gene activity and maintaining the structure of chromosomes.

Some noncoding DNA regions, called introns, are located within protein-coding genes but are removed before a protein is made. Regulatory elements, such as enhancers, can be located in introns. Other noncoding regions are found between genes and are known as intergenic regions.

The identity of regulatory elements and other functional regions in noncoding DNA is not completely understood. Researchers are working to understand the location and role of these genetic components.

Scientific journal articles for further reading

For more information about noncoding DNA:

Cold Spring Harbor Laboratory DNA Learning Center: The Human Genome: Genes and Non-coding DNA, 3D Animation with Basic Narration (https://

University of Leicester Virtual Genetics Education Centre: Gene Expression and Regulation (https://www2.le.ac.uk/projects/vgec/highereducation/topics/geneexpression-regulation)

Georgia Tech Biology: Gene Regulation (http://bio1510.biology.gatech.edu/module-4-genes-and-genomes/4-7-gene-regulation/)

National Academies Press: Noncoding DNA—Subtlety, Punctuation, or Just Plain Junk? (https://www.nap.edu/read/1859/chapter/6#99)

Genetic Science Learning Center, University of Utah: RNA’s Role in the Central Dogma (https://learn.genetics.utah.edu/content/basics/centraldogma/), Telomeres (https://learn.genetics.utah.edu/content/basics/telomeres/), and Centromeres (https://learn.genetics.utah.edu/content/basics/readchromosomes/)
Mutations and Health

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is a gene mutation and how do mutations occur?</td>
<td>22</td>
</tr>
<tr>
<td>How can gene mutations affect health and development?</td>
<td>24</td>
</tr>
<tr>
<td>Do all gene mutations affect health and development?</td>
<td>25</td>
</tr>
<tr>
<td>What kinds of gene mutations are possible?</td>
<td>27</td>
</tr>
<tr>
<td>Can a change in the number of genes affect health and development?</td>
<td>33</td>
</tr>
<tr>
<td>Can changes in the number of chromosomes affect health and development?</td>
<td>35</td>
</tr>
<tr>
<td>Can changes in the structure of chromosomes affect health and development?</td>
<td>42</td>
</tr>
<tr>
<td>Can changes in noncoding DNA affect health and development?</td>
<td>53</td>
</tr>
<tr>
<td>Can changes in mitochondrial DNA affect health and development?</td>
<td>55</td>
</tr>
<tr>
<td>What are complex or multifactorial disorders?</td>
<td>57</td>
</tr>
<tr>
<td>What does it mean to have a genetic predisposition to a disease?</td>
<td>58</td>
</tr>
<tr>
<td>How are gene mutations involved in evolution?</td>
<td>60</td>
</tr>
<tr>
<td>What information about a genetic condition can statistics provide?</td>
<td>62</td>
</tr>
<tr>
<td>How are genetic conditions and genes named?</td>
<td>64</td>
</tr>
</tbody>
</table>
What is a gene mutation and how do mutations occur?

A gene mutation is a permanent alteration in the DNA sequence that makes up a gene, such that the sequence differs from what is found in most people. Mutations range in size; they can affect anywhere from a single DNA building block (base pair) to a large segment of a chromosome that includes multiple genes.

Gene mutations can be classified in two major ways:

- Hereditary mutations are inherited from a parent and are present throughout a person’s life in virtually every cell in the body. These mutations are also called germline mutations because they are present in the parent’s egg or sperm cells, which are also called germ cells. When an egg and a sperm cell unite, the resulting fertilized egg cell receives DNA from both parents. If this DNA has a mutation, the child that grows from the fertilized egg will have the mutation in each of his or her cells.

- Acquired (or somatic) mutations occur at some time during a person’s life and are present only in certain cells, not in every cell in the body. These changes can be caused by environmental factors such as ultraviolet radiation from the sun, or can occur if an error is made as DNA copies itself during cell division. Acquired mutations in somatic cells (cells other than sperm and egg cells) cannot be passed to the next generation.

Genetic changes that are described as de novo (new) mutations can be either hereditary or somatic. In some cases, the mutation occurs in a person’s egg or sperm cell but is not present in any of the person’s other cells. In other cases, the mutation occurs in the fertilized egg shortly after the egg and sperm cells unite. (It is often impossible to tell exactly when a de novo mutation happened.) As the fertilized egg divides, each resulting cell in the growing embryo will have the mutation. De novo mutations may explain genetic disorders in which an affected child has a mutation in every cell in the body but the parents do not, and there is no family history of the disorder.

Somatic mutations that happen in a single cell early in embryonic development can lead to a situation called mosaicism. These genetic changes are not present in a parent’s egg or sperm cells, or in the fertilized egg, but happen a bit later when the embryo includes several cells. As all the cells divide during growth and development, cells that arise from the cell with the altered gene will have the mutation, while other cells will not. Depending on the mutation and how many cells are affected, mosaicism may or may not cause health problems.
Most disease-causing gene mutations are uncommon in the general population. However, other genetic changes occur more frequently. Genetic alterations that occur in more than 1 percent of the population are called polymorphisms. They are common enough to be considered a normal variation in the DNA. Polymorphisms are responsible for many of the normal differences between people such as eye color, hair color, and blood type. Although many polymorphisms have no negative effects on a person’s health, some of these variations may influence the risk of developing certain disorders.

For more information about mutations:

An introductory explanation of what mutations are and how they occur (https://www.yourgenome.org/facts/what-is-a-mutation) is provided by Your Genome from the Wellcome Genome Campus.

KidsHealth from Nemours offers an introduction to genes, genetics, and genetic changes (https://kidshealth.org/en/parents/about-genetics.html).

Additional information about genetic alterations is available from the University of Utah fact sheet “What is Mutation?” (https://learn.genetics.utah.edu/content/basics/mutation/)

Using animations and videos, DNA From the Beginning (Cold Spring Harbor National Laboratory) describes the early experiments that helped researchers understand genetic mutations (http://www.dnaftb.org/27/).
How can gene mutations affect health and development?

To function correctly, each cell depends on thousands of proteins to do their jobs in the right places at the right times. Sometimes, gene mutations prevent one or more of these proteins from working properly. By changing a gene’s instructions for making a protein, a mutation can cause the protein to malfunction or to be missing entirely. When a mutation alters a protein that plays a critical role in the body, it can disrupt normal development or cause a medical condition. A condition caused by mutations in one or more genes is called a genetic disorder.

In some cases, gene mutations are so severe that they prevent an embryo from surviving until birth. These changes occur in genes that are essential for development, and often disrupt the development of an embryo in its earliest stages. Because these mutations have very serious effects, they are incompatible with life.

It is important to note that genes themselves do not cause disease—genetic disorders are caused by mutations that make a gene function improperly. For example, when people say that someone has “the cystic fibrosis gene,” they are usually referring to a mutated version of the CFTR gene, which causes the disease. All people, including those without cystic fibrosis, have a version of the CFTR gene.

For more information about mutations and genetic disorders:

MedlinePlus provides links to various resources about genetic disorders (https://medlineplus.gov/geneticdisorders.html).

Do all gene mutations affect health and development?

No; only a small percentage of mutations cause genetic disorders—most have no impact on health or development. For example, some mutations alter a gene’s DNA sequence but do not change the function of the protein made by the gene.

Often, gene mutations that could cause a genetic disorder are repaired by certain enzymes before the gene is expressed and an altered protein is produced. Each cell has a number of pathways through which enzymes recognize and repair errors in DNA. Because DNA can be damaged or mutated in many ways, DNA repair is an important process by which the body protects itself from disease.

A very small percentage of all mutations actually have a positive effect. These mutations lead to new versions of proteins that help an individual better adapt to changes in his or her environment. For example, a beneficial mutation could result in a protein that protects an individual and future generations from a new strain of bacteria.

Because a person’s genetic code can have a large number of mutations with no effect on health, diagnosing genetic conditions can be difficult. Sometimes, genes thought to be related to a particular genetic condition have mutations, but whether these changes are involved in development of the condition has not been determined; these genetic changes are known as variants of unknown significance (VOUS) or (VUS). Sometimes, no mutations are found in suspected disease-related genes, but mutations are found in other genes whose relationship to a particular genetic condition is unknown. It is difficult to know whether these variants are involved in the disease.

For more information about DNA repair and the health effects of gene mutations:

The University of Utah Genetic Science Learning Center provides information about genetic disorders (https://learn.genetics.utah.edu/content/disorders/) that explains why some mutations cause disorders but others do not.

Cold Spring Harbor National Laboratory’s DNA From the Beginning explains the discovery of DNA repair mechanisms in cells (http://www.dnaftb.org/28/) and introduces the researchers who worked to understand these mechanisms.

FORCE (Facing Our Risk of Cancer Empowered) explains the significance of variants of unknown significance in cancer (https://www.facingourrisk.org/
What kinds of gene mutations are possible?

The DNA sequence of a gene can be altered in a number of ways. Gene mutations have varying effects on health, depending on where they occur and whether they alter the function of essential proteins. The types of mutations include:

Missense mutation

This type of mutation is a change in one DNA base pair (image on page 29) that results in the substitution of one amino acid for another in the protein made by a gene.

Nonsense mutation

A nonsense mutation (image on page 29) is also a change in one DNA base pair. Instead of substituting one amino acid for another, however, the altered DNA sequence prematurely signals the cell to stop building a protein. This type of mutation results in a shortened protein that may function improperly or not at all.

Insertion

An insertion (image on page 30) changes the number of DNA bases in a gene by adding a piece of DNA. As a result, the protein made by the gene may not function properly.

Deletion

A deletion (image on page 30) changes the number of DNA bases by removing a piece of DNA. Small deletions may remove one or a few base pairs within a gene, while larger deletions can remove an entire gene or several neighboring genes. The deleted DNA may alter the function of the resulting protein(s).

Duplication

A duplication (image on page 31) consists of a piece of DNA that is abnormally copied one or more times. This type of mutation may alter the function of the resulting protein.
Frameshift mutation

This type of mutation occurs when the addition or loss of DNA bases changes a gene's reading frame. A reading frame consists of groups of 3 bases that each code for one amino acid. A frameshift mutation (image on page 31) shifts the grouping of these bases and changes the code for amino acids. The resulting protein is usually nonfunctional. Insertions, deletions, and duplications can all be frameshift mutations.

Repeat expansion

Nucleotide repeats are short DNA sequences that are repeated a number of times in a row. For example, a trinucleotide repeat is made up of 3-base-pair sequences, and a tetranucleotide repeat is made up of 4-base-pair sequences. A repeat expansion (image on page 32) is a mutation that increases the number of times that the short DNA sequence is repeated. This type of mutation can cause the resulting protein to function improperly.

For more information about the types of gene mutations:

The National Human Genome Research Institute offers a Talking Glossary of Genetic Terms (https://www.genome.gov/genetics-glossary). This resource includes definitions, diagrams, and detailed audio descriptions of several of the gene mutations listed above.

A brief explanation of different mutation types (https://www.yourgenome.org/facts/what-types-of-mutation-are-there) is available from yourgenome.org, a service of the Wellcome Trust.

The Khan Academy has a video describing the different types of gene mutations (https://www.khanacademy.org/test-prep/mcat/biomolecules/genetic-mutations/v/the-different-types-of-mutations).
In this example, the nucleotide adenine is replaced by cytosine in the genetic code, introducing an incorrect amino acid into the protein sequence.

In this example, the nucleotide cytosine is replaced by thymine in the DNA code, signaling the cell to shorten the protein.
Insertion mutation

In this example, one nucleotide (adenine) is added in the DNA code, changing the amino acid sequence that follows.

Deletion mutation

In this example, one nucleotide (adenine) is deleted from the DNA code, changing the amino acid sequence that follows.
A section of DNA is accidentally duplicated when a chromosome is copied.

A frameshift mutation changes the amino acid sequence from the site of the mutation.
In this example, a repeated trinucleotide sequence (CAG) adds a series of the amino acid glutamine to the resulting protein.
Can a change in the number of genes affect health and development?

People have two copies of most genes, one copy inherited from each parent. In some cases, however, the number of copies varies—meaning that a person can be born with one, three, or more copies of particular genes. Less commonly, one or more genes may be entirely missing. This type of genetic difference is known as copy number variation (CNV).

Copy number variation results from insertions, deletions, and duplications of large segments of DNA. These segments are big enough to include whole genes. Variation in gene copy number can influence the activity of genes and ultimately affect many body functions.

Researchers were surprised to learn that copy number variation accounts for a significant amount of genetic difference between people. More than 10 percent of human DNA appears to contain these differences in gene copy number. While much of this variation does not affect health or development, some differences likely influence a person’s risk of disease and response to certain drugs. Future research will focus on the consequences of copy number variation in different parts of the genome and study the contribution of these variations to many types of disease.

For more information about copy number variation:

The Howard Hughes Medical Institute discusses the results of recent research on copy number variation in the news release, Genetic Variation: We’re More Different Than We Thought (https://www.hhmi.org/news/genetic-variation-were-more-different-we-thought).

More information about copy number variation (https://www.dnalc.org/view/552-Copy-Number-Variants.html) is available in a video from Cold Spring Harbor Laboratory.

A definition of copy number variation (https://www.genome.gov/genetics-glossary/Copy-Number-Variation) is included in the Talking Genome Glossary from the National Human Genome Research Institute.
For people interested in more technical data, several institutions provide databases of structural differences in human DNA, including copy number variation:

- The Centre for Applied Genomics Database of Genomic Variants (http://dgv.tcag.ca/dgv/app/home)
- The Sanger Institute: Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources (DECIPHER (https://decipher.sanger.ac.uk/))
Can changes in the number of chromosomes affect health and development?

Human cells normally contain 23 pairs of chromosomes, for a total of 46 chromosomes in each cell (image on page 37). A change in the number of chromosomes can cause problems with growth, development, and function of the body’s systems. These changes can occur during the formation of reproductive cells (eggs and sperm), in early fetal development, or in any cell after birth. A gain or loss of chromosomes from the normal 46 is called aneuploidy.

A common form of aneuploidy is trisomy, or the presence of an extra chromosome in cells. "Tri-" is Greek for "three"; people with trisomy have three copies of a particular chromosome in cells instead of the normal two copies. Down syndrome is an example of a condition caused by trisomy (image on page 38). People with Down syndrome typically have three copies of chromosome 21 in each cell, for a total of 47 chromosomes per cell.

Monosomy, or the loss of one chromosome in cells, is another kind of aneuploidy. "Mono-" is Greek for "one"; people with monosomy have one copy of a particular chromosome in cells instead of the normal two copies. Turner syndrome is a condition caused by monosomy (image on page 39). Women with Turner syndrome usually have only one copy of the X chromosome in every cell, for a total of 45 chromosomes per cell.

Rarely, some cells end up with complete extra sets of chromosomes. Cells with one additional set of chromosomes, for a total of 69 chromosomes, are called triploid (image on page 40). Cells with two additional sets of chromosomes, for a total of 92 chromosomes, are called tetraploid. A condition in which every cell in the body has an extra set of chromosomes is not compatible with life.

In some cases, a change in the number of chromosomes occurs only in certain cells. When an individual has two or more cell populations with a different chromosomal makeup, this situation is called chromosomal mosaicism (image on page 41). Chromosomal mosaicism occurs from an error in cell division in cells other than eggs and sperm. Most commonly, some cells end up with one extra or missing chromosome (for a total of 45 or 47 chromosomes per cell), while other cells have the usual 46 chromosomes. Mosaic Turner syndrome is one example of chromosomal mosaicism. In females with this condition, some cells have 45 chromosomes because they are missing one copy of the X chromosome, while other cells have the usual number of chromosomes.

Many cancer cells also have changes in their number of chromosomes. These changes are not inherited; they occur in somatic cells (cells other than eggs or sperm) during the formation or progression of a cancerous tumor.
For more information about chromosomal disorders:

A discussion of how chromosomal abnormalities happen (https://www.genome.gov/about-genomics/fact-sheets/Chromosome-Abnormalities-Fact-Sheet) is provided by the National Human Genome Research Institute.

The Centre for Genetics Education offers a fact sheet about changes in chromosome number or size (https://www.genetics.edu.au/publications-and-resources/facts-sheets/fact-sheet-4-chromosome-changes).

Information about chromosomal changes (http://www.eurogentest.org/index.php?id=611), including changes in the number of chromosomes, is available from EuroGentest.

The University of Leicester’s Virtual Genetics Education Center provides an explanation of numerical chromosome aberrations (https://www2.le.ac.uk/projects/vgec/healthprof/topics/patterns-of-inheritance/chromosomal-abnormalities#numerical-aberrations).

Your Genome from the Wellcome Genome Campus discusses chromosome disorders (https://www.yourgenome.org/facts/what-is-a-chromosome-disorder), including how changes in the number of chromosomes cause genetic disorders.

The National Organization for Rare Disorders offers an overview of triploidy (https://rarediseases.org/rare-diseases/triploidy/).

MedlinePlus offers an encyclopedia article about chromosomal mosaicism (https://medlineplus.gov/ency/article/001317.htm).
Human cells normally contain 23 pairs of chromosomes, for a total of 46 chromosomes in each cell.
Trisomy is the presence of an extra chromosome in cells. Down syndrome is an example of a condition caused by trisomy.
Monosomy is the loss of one chromosome in cells. Turner syndrome is an example of a condition caused by monosomy.
Cells with one additional set of chromosomes, for a total of 69 chromosomes, are called triploid.
When an individual has two or more cell populations with a different chromosomal makeup, this situation is called chromosomal mosaicism.
Can changes in the structure of chromosomes affect health and development?

Changes that affect the structure of chromosomes can cause problems with growth, development, and function of the body's systems. These changes can affect many genes along the chromosome and disrupt the proteins made from those genes.

Structural changes can occur during the formation of egg or sperm cells, in early fetal development, or in any cell after birth. Pieces of DNA can be rearranged within one chromosome or transferred between two or more chromosomes. The effects of structural changes depend on their size and location, and whether any genetic material is gained or lost. Some changes cause medical problems, while others may have no effect on a person's health.

Changes in chromosome structure include:

Translocations

A translocation occurs when a piece of one chromosome breaks off and attaches to another chromosome. This type of rearrangement is described as balanced (image on page 45) if no genetic material is gained or lost in the cell. If there is a gain or loss of genetic material, the translocation is described as unbalanced (image on page 46).

Deletions

Deletions (image on page 47) occur when a chromosome breaks and some genetic material is lost. Deletions can be large or small, and can occur anywhere along a chromosome.

Duplications

Duplications (image on page 48) occur when part of a chromosome is copied (duplicated) too many times. This type of chromosomal change results in extra copies of genetic material from the duplicated segment.

Inversions

An inversion (image on page 49) involves the breakage of a chromosome in two places; the resulting piece of DNA is reversed and re-inserted into the chromosome. Genetic material may or may not be lost as a result of the chromosome breaks. An inversion that involves the chromosome's constriction point (centromere) is called a pericentric inversion. An inversion that occurs in the long (q) arm or short (p) arm and does not involve the centromere is called a paracentric inversion.
Isochromosomes

An isochromosome (image on page 50) is a chromosome with two identical arms. Instead of one long (q) arm and one short (p) arm, an isochromosome has two long arms or two short arms. As a result, these abnormal chromosomes have an extra copy of some genes and are missing copies of other genes.

Dicentric chromosomes

Unlike normal chromosomes, which have a single constriction point (centromere), a dicentric chromosome (image on page 51) contains two centromeres. Dicentric chromosomes result from the abnormal fusion of two chromosome pieces, each of which includes a centromere. These structures are unstable and often involve a loss of some genetic material.

Ring chromosomes

Ring chromosomes (image on page 52) usually occur when a chromosome breaks in two places and the ends of the chromosome arms fuse together to form a circular structure. The ring may or may not include the chromosome’s constriction point (centromere). In many cases, genetic material near the ends of the chromosome is lost.

Many cancer cells also have changes in their chromosome structure. These changes are not inherited; they occur in somatic cells (cells other than eggs or sperm) during the formation or progression of a cancerous tumor.

For more information about structural changes to chromosomes:

The National Human Genome Research Institute provides a list of questions and answers about chromosome abnormalities (https://www.genome.gov/about-genomics/fact-sheets/Chromosome-Abnormalities-Fact-Sheet), including a glossary of related terms.

Chromosome Disorder Outreach offers a fact sheet on this topic titled Introduction to Chromosomes (https://chromodisorder.org/introduction-to-chromosomes/). This resource includes illustrated explanations of several chromosome abnormalities.

The University of Leicester’s Virtual Genetics Education Center provides an explanation of structural chromosome aberrations (https://www2.le.ac.uk/projects/vgec/healthprof/topics/patterns-of-inheritance/chromosomal-abnormalities#structural-aberrations).

Your Genome from the Wellcome Genome Campus discusses chromosome disorders (https://www.yourgenome.org/facts/what-is-a-chromosome-disorder), including types of structural abnormalities in chromosomes that are involved in genetic diseases.

Images

In a balanced translocation, pieces of chromosomes are rearranged but no genetic material is gained or lost in the cell.
An unbalanced translocation occurs when a child inherits a chromosome with extra or missing genetic material from a parent with a balanced translocation.
A deletion occurs when a chromosome breaks and some genetic material is lost.
A duplication occurs when part of a chromosome is copied (duplicated) abnormally, resulting in extra genetic material from the duplicated segment.
Inversions occur when a chromosome breaks in two places and the resulting piece of DNA is reversed and re-inserted into the chromosome. Inversions that involve the centromere are called pericentric inversions; those that do not involve the centromere are called paracentric inversions.
An isochromosome is an abnormal chromosome with two identical arms, either two short (p) arms or two long (q) arms.
Dicentric chromosomes result from the abnormal fusion of two chromosome pieces, each of which includes a centromere.
Ring chromosomes usually occur when a chromosome breaks in two places and the ends of the chromosome arms fuse together to form a circular structure.
Can changes in noncoding DNA affect health and development?

It is well established that changes in genes can alter a protein’s function in the body, potentially causing health problems. It is becoming clear that changes in regions of DNA that do not contain genes (noncoding DNA) can also lead to disease.

Many regions of noncoding DNA play a role in the control of gene activity, determining when and where certain genes are turned on or off. By altering these sequences, a mutation in noncoding DNA can cause a protein to be expressed in the wrong place or at the wrong time or can reduce or eliminate expression of an important protein when it is needed. Not all changes in noncoding DNA have an impact on health, but those that alter the expression pattern of a protein that plays a critical role in the body can disrupt normal development or cause a health problem.

Mutations in noncoding DNA have been linked to developmental disorders such as isolated Pierre Robin sequence, which is caused by changes in enhancer elements that control the activity of the SOX9 gene. Noncoding DNA mutations have also been associated with several types of cancer. In addition to enhancer elements, these mutations can disrupt other regulatory elements including promoters, insulators, and silencers. Mutations in regions that provide instructions for making functional RNA molecules, such as transfer RNAs, microRNAs, or long noncoding RNAs, have also been implicated in disease.

The same types of genetic changes that occur in genes or that alter the structure of chromosomes can affect health and development when they occur in noncoding DNA. These mutations include changes in single DNA building blocks (point mutations), insertions, deletions, duplications, and translocations. Noncoding DNA mutations can be inherited from a parent or acquired during a person’s life.

Much is still unknown about how to identify functional regions of noncoding DNA and the role such regions play. As a result, linking genetic changes in noncoding DNA to their effects on certain genes and to health conditions is difficult. The roles of noncoding DNA and the effects of genetic changes in it are growing areas of research.

Scientific journal articles for further reading

text from PubMed Central: PMC5084913 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084913/).

Read more about the role of noncoding DNA in health and disease:

Duke University: Variation in “Junk” DNA Leads to Trouble (https://today.duke.edu/2016/08/variation-%E2%80%9Cjunk%E2%80%9D-dna-leads-trouble)

HEDD: Human Enhancer Disease Database (http://zdzlab.einstein.yu.edu/1/hedd.php)
Can changes in mitochondrial DNA affect health and development?

Mitochondria (image on page 8) are structures within cells that convert the energy from food into a form that cells can use. Although most DNA is packaged in chromosomes within the nucleus, mitochondria also have a small amount of their own DNA (known as mitochondrial DNA or mtDNA). In some cases, inherited changes in mitochondrial DNA can cause problems with growth, development, and function of the body’s systems. These mutations disrupt the mitochondria’s ability to generate energy efficiently for the cell.

Conditions caused by mutations in mitochondrial DNA often involve multiple organ systems. The effects of these conditions are most pronounced in organs and tissues that require a lot of energy (such as the heart, brain, and muscles). Although the health consequences of inherited mitochondrial DNA mutations vary widely, frequently observed features include muscle weakness and wasting, problems with movement, diabetes, kidney failure, heart disease, loss of intellectual functions (dementia), hearing loss, and abnormalities involving the eyes and vision.

Mitochondrial DNA is also prone to somatic mutations, which are not inherited. Somatic mutations occur in the DNA of certain cells during a person’s lifetime and typically are not passed to future generations. Because mitochondrial DNA has a limited ability to repair itself when it is damaged, these mutations tend to build up over time. A buildup of somatic mutations in mitochondrial DNA has been associated with some forms of cancer and an increased risk of certain age-related disorders such as heart disease, Alzheimer disease, and Parkinson disease. Additionally, research suggests that the progressive accumulation of these mutations over a person’s lifetime may play a role in the normal process of aging.

For more information about conditions caused by mitochondrial DNA mutations:

Genetics Home Reference provides information about mitochondrial DNA and related conditions written in consumer-friendly language.

Additional information about mitochondrial disorders (https://www.cincinnatichildrens.org/service/m/mitochondrial-disorders/patients) is available from Cincinnati Children's Hospital Medical Center.
The Muscular Dystrophy Association offers an introduction to mitochondrial disorders as part of their fact sheet called Mitochondrial Myopathies (https://www.mda.org/disease/mitochondrial-myopathies).

The Neuromuscular Disease Center at Washington University provides an in-depth description of many mitochondrial conditions (https://neuromuscular.wustl.edu/mitosyn.html).
What are complex or multifactorial disorders?

Researchers are learning that nearly all conditions and diseases have a genetic component. Some disorders, such as sickle cell disease and cystic fibrosis, are caused by mutations in a single gene. The causes of many other disorders, however, are much more complex. Common medical problems such as heart disease, type 2 diabetes, and obesity do not have a single genetic cause—they are likely associated with the effects of multiple genes (polygenic) in combination with lifestyle and environmental factors. Conditions caused by many contributing factors are called complex or multifactorial disorders.

Although complex disorders often cluster in families, they do not have a clear-cut pattern of inheritance. This makes it difficult to determine a person’s risk of inheriting or passing on these disorders. Complex disorders are also difficult to study and treat because the specific factors that cause most of these disorders have not yet been identified. Researchers continue to look for major contributing genes for many common complex disorders.

For more information about complex disorders:

The Children's Hospital of Wisconsin provides basic information about multifactorial inheritance (https://www.chw.org/medical-care/genetics-and-genomics-program/medical-genetics/multifactorial-inheritance) and examples of multifactorial disorders.

If you would like information about a specific complex disorder such as diabetes or obesity, MedlinePlus (https://medlineplus.gov/) will lead you to fact sheets and other reliable medical information. In addition, the Centers for Disease Control and Prevention provides a detailed list of diseases and conditions (https://www.cdc.gov/DiseasesConditions/) that links to additional information.
What does it mean to have a genetic predisposition to a disease?

A genetic predisposition (sometimes also called genetic susceptibility) is an increased likelihood of developing a particular disease based on a person's genetic makeup. A genetic predisposition results from specific genetic variations that are often inherited from a parent. These genetic changes contribute to the development of a disease but do not directly cause it. Some people with a predisposing genetic variation will never get the disease while others will, even within the same family.

Genetic variations can have large or small effects on the likelihood of developing a particular disease. For example, certain mutations in the BRCA1 or BRCA2 genes greatly increase a person's risk of developing breast cancer and ovarian cancer. Variations in other genes, such as BARD1 and BRIP1, also increase breast cancer risk, but the contribution of these genetic changes to a person's overall risk appears to be much smaller.

Current research is focused on identifying genetic changes that have a small effect on disease risk but are common in the general population. Although each of these variations only slightly increases a person's risk, having changes in several different genes may combine to increase disease risk significantly. Changes in many genes, each with a small effect, may underlie susceptibility to many common diseases, including cancer, obesity, diabetes, heart disease, and mental illness.

In people with a genetic predisposition, the risk of disease can depend on multiple factors in addition to an identified genetic change. These include other genetic factors (sometimes called modifiers) as well as lifestyle and environmental factors. Diseases that are caused by a combination of factors are described as multifactorial on page 57. Although a person's genetic makeup cannot be altered, some lifestyle and environmental modifications (such as having more frequent disease screenings and maintaining a healthy weight) may be able to reduce disease risk in people with a genetic predisposition.

For more information about genetic predisposition to disease:

The Genetic Science Learning Center at the University of Utah provides more information about calculating the risk of genetic diseases and predicting
disease based on family history (https://learn.genetics.utah.edu/content/history/geneticrisk/).

How are gene mutations involved in evolution?

Evolution is the process by which populations of organisms change over generations. Genetic variations underlie these changes. Genetic variations can arise from gene mutations or from genetic recombination (a normal process in which genetic material is rearranged as a cell is getting ready to divide). These variations often alter gene activity or protein function, which can introduce different traits in an organism. If a trait is advantageous and helps the individual survive and reproduce, the genetic variation is more likely to be passed to the next generation (a process known as natural selection). Over time, as generations of individuals with the trait continue to reproduce, the advantageous trait becomes increasingly common in a population, making the population different than an ancestral one. Sometimes the population becomes so different that it is considered a new species.

Not all mutations lead to evolution. Only hereditary mutations on page 22, which occur in egg or sperm cells, can be passed to future generations and potentially contribute to evolution. Some mutations occur during a person’s lifetime in only some of the body’s cells and are not hereditary, so natural selection cannot play a role. Also, many genetic changes have no impact on the function of a gene or protein and are not helpful or harmful. In addition, the environment in which a population of organisms lives is integral to the selection of traits. Some differences introduced by mutations may help an organism survive in one setting but not in another—for example, resistance to a certain bacteria is only advantageous if that bacteria is found in a particular location and harms those who live there.

So why do some harmful traits, like genetic diseases, persist in populations instead of being removed by natural selection? There are several possible explanations, but in many cases, the answer is not clear. For some conditions, such as the neurological condition Huntington disease, signs and symptoms do not occur until after a person has children, so the gene mutation can be passed on despite being harmful. For other harmful traits, a phenomenon called reduced penetrance on page 136, in which some individuals with a disease-associated mutation do not show signs and symptoms of the condition, can also allow harmful genetic variations to be passed to future generations. For some conditions, having one mutated copy of a gene in each cell is advantageous, while having two mutated copies causes disease. The best-studied example of this phenomenon is sickle cell disease: Having two mutated copies of the HBB gene in each cell results in the disease, but having only one copy provides some resistance to malaria. This disease resistance helps explain why the mutations that cause sickle cell disease are still found in many populations, especially in areas where malaria is prevalent.
To find out more about the role of gene mutations in evolution:

Learn.Genetics from the University of Utah: Variation, Selection, and Time (https://learn.genetics.utah.edu/content/selection/)

Cold Spring Harbor Lab: Genetic Origins (http://www.geneticorigins.org/)

Understanding Evolution from the University of California Museum of Paleontology: Huntington’s Chorea: Evolution and Genetic Disease (https://evolution.berkeley.edu/evolibrary/article/0_0_0/medicine_05)

Understanding Evolution from the University of California Museum of Paleontology: Misconceptions About Natural Selection (https://evolution.berkeley.edu/evolibrary/article/evo_32)
What information about a genetic condition can statistics provide?

Statistical data can provide general information about how common a condition is, how many people have the condition, or how likely it is that a person will develop the condition. Statistics are not personalized, however—they offer estimates based on groups of people. By taking into account a person's family history, medical history, and other factors, a genetics professional can help interpret what statistics mean for a particular patient.

Some statistical terms are commonly used when describing genetic conditions and other disorders. These terms include:

<table>
<thead>
<tr>
<th>Statistical term</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence</td>
<td>The incidence of a gene mutation or a genetic disorder is the number of people who are born with the mutation or disorder in a specified group per year. Incidence is often written in the form “1 in [a number]” or as a total number of live births.</td>
<td>About 1 in 200,000 people in the United States are born with syndrome A each year. An estimated 15,000 infants with syndrome B were born last year worldwide.</td>
</tr>
<tr>
<td>Prevalence</td>
<td>The prevalence of a gene mutation or a genetic disorder is the total number of people in a specified group at a given time who have the mutation or disorder. This term includes both newly diagnosed and pre-existing cases in people of any age. Prevalence is often written in the form “1 in [a number]” or as a total number of people who have a condition.</td>
<td>Approximately 1 in 100,000 people in the United States have syndrome A at the present time. About 100,000 children worldwide currently have syndrome B.</td>
</tr>
<tr>
<td>Statistical term</td>
<td>Description</td>
<td>Examples</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>Mortality</td>
<td>Mortality is the number of deaths from a particular disorder occurring in a specified group per year. Mortality is usually expressed as a total number of deaths.</td>
<td>An estimated 12,000 people worldwide died from syndrome C in 2015.</td>
</tr>
<tr>
<td>Lifetime risk</td>
<td>Lifetime risk is the average risk of developing a particular disorder at some point during a lifetime. Lifetime risk is often written as a percentage or as “1 in [a number].” It is important to remember that the risk per year or per decade is much lower than the lifetime risk. In addition, other factors may increase or decrease a person's risk as compared with the average.</td>
<td>Approximately 1 percent of people in the United States develop disorder D during their lifetimes. The lifetime risk of developing disorder D is 1 in 100.</td>
</tr>
</tbody>
</table>

For more information about understanding and interpreting statistics:

NIH News in Health offers an explanation of health statistics in their article "Understanding Health Risks (https://newsinhealth.nih.gov/2016/10/understanding-health-risks)."

The New York Department of Health provides a basic explanation of statistical terms (https://www.health.ny.gov/diseases/chronic/basicstat.htm), including incidence, prevalence, morbidity, and mortality.

More detailed information about health statistics is available from Woloshin, Schwartz, and Welch's Know Your Chances: Understanding Health Statistics (https://www.ncbi.nlm.nih.gov/books/NBK115435/), which is available through the NCBI Bookshelf.

How are genetic conditions and genes named?

Naming genetic conditions

Genetic conditions are not named in one standard way (unlike genes, which are given an official name and symbol by a formal committee). Doctors who treat families with a particular disorder are often the first to propose a name for the condition. Expert working groups may later revise the name to improve its usefulness. Naming is important because it allows accurate and effective communication about particular conditions, which will ultimately help researchers find new approaches to treatment.

Disorder names are often derived from one or a combination of sources:

- The basic genetic or biochemical defect that causes the condition (for example, alpha-1 antitrypsin deficiency);
- One or more major signs or symptoms of the disorder (for example, hypermanganesemia with dystonia, polycythemia, and cirrhosis);
- The parts of the body affected by the condition (for example, craniofacial-deafness-hand syndrome);
- The name of a physician or researcher, often the first person to describe the disorder (for example, Marfan syndrome, which was named after Dr. Antoine Bernard-Jean Marfan);
- A geographic area (for example, familial Mediterranean fever, which occurs mainly in populations bordering the Mediterranean Sea); or
- The name of a patient or family with the condition (for example, amyotrophic lateral sclerosis, which is also called Lou Gehrig disease after the famous baseball player who had the condition).

Disorders named after a specific person or place are called eponyms. There is debate as to whether the possessive form (e.g., Alzheimer’s disease) or the nonpossessive form (Alzheimer disease) of eponyms is preferred. As a rule, medical geneticists use the nonpossessive form, and this form may become the standard for doctors in all fields of medicine.

Naming genes

The HUGO Gene Nomenclature Committee (https://www.genenames.org/) (HGNC) designates an official name and symbol (an abbreviation of the name) for each known human gene. Some official gene names include additional information in parentheses, such as related genetic conditions, subtypes of a condition, or inheritance pattern. The HGNC is a non-profit organization funded by the U.K. Medical Research Council and the U.S. National Institutes of Health.
The Committee has named more than 13,000 of the estimated 20,000 to 25,000 genes in the human genome.

During the research process, genes often acquire several alternate names and symbols. Different researchers investigating the same gene may each give the gene a different name, which can cause confusion. The HGNC assigns a unique name and symbol to each human gene, which allows effective organization of genes in large databanks, aiding the advancement of research. For specific information about how genes are named, refer to the HGNC's Guidelines for Human Gene Nomenclature (https://www.genenames.org/about/guidelines).
How Genes Work

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What are proteins and what do they do?</td>
<td>67</td>
</tr>
<tr>
<td>How do genes direct the production of proteins?</td>
<td>74</td>
</tr>
<tr>
<td>Can genes be turned on and off in cells?</td>
<td>76</td>
</tr>
<tr>
<td>What is epigenetics?</td>
<td>77</td>
</tr>
<tr>
<td>How do cells divide?</td>
<td>80</td>
</tr>
<tr>
<td>How do genes control the growth and division of cells?</td>
<td>82</td>
</tr>
<tr>
<td>How do geneticists indicate the location of a gene?</td>
<td>85</td>
</tr>
</tbody>
</table>
What are proteins and what do they do?

Proteins are large, complex molecules that play many critical roles in the body. They do most of the work in cells and are required for the structure, function, and regulation of the body’s tissues and organs.

Proteins are made up of hundreds or thousands of smaller units called amino acids, which are attached to one another in long chains. There are 20 different types of amino acids that can be combined to make a protein. The sequence of amino acids determines each protein’s unique 3-dimensional structure and its specific function.

Proteins can be described according to their large range of functions in the body, listed in alphabetical order:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibody</td>
<td>Antibodies bind to specific foreign particles, such as viruses and bacteria, to help protect the body.</td>
<td>Immunoglobulin G (IgG) (image on page 69)</td>
</tr>
<tr>
<td>Enzyme</td>
<td>Enzymes carry out almost all of the thousands of chemical reactions that take place in cells. They also assist with the formation of new molecules by reading the genetic information stored in DNA.</td>
<td>Phenylalanine hydroxylase (image on page 70)</td>
</tr>
<tr>
<td>Messenger</td>
<td>Messenger proteins, such as some types of hormones, transmit signals to coordinate biological processes between different cells, tissues, and organs.</td>
<td>Growth hormone (image on page 71)</td>
</tr>
<tr>
<td>Structural component</td>
<td>These proteins provide structure and support for cells. On a larger scale, they also allow the body to move.</td>
<td>Actin (image on page 72)</td>
</tr>
<tr>
<td>Transport/storage</td>
<td>These proteins bind and carry atoms and small molecules within cells and throughout the body.</td>
<td>Ferritin (image on page 73)</td>
</tr>
</tbody>
</table>

For more information about proteins and their functions:

Arizona State University’s "Ask a Biologist" discusses the different kinds of proteins (https://askabiologist.asu.edu/venom/what-are-proteins) and what they do.
Immunoglobulin G (IgG)

Immunoglobulin G is a type of antibody that circulates in the blood and recognizes foreign particles that might be harmful.
The functional phenylalanine hydroxylase enzyme is made up of four identical subunits. The enzyme converts the amino acid phenylalanine to another amino acid, tyrosine.
Growth hormone is a messenger protein made by the pituitary gland. It regulates cell growth by binding to a protein called a growth hormone receptor.
Actin filaments, which are structural proteins made up of multiple subunits, help muscles contract and cells maintain their shape.
Ferritin, a protein made up of 24 identical subunits, is involved in iron storage.
How do genes direct the production of proteins?

Most genes contain the information needed to make functional molecules called proteins. (A few genes produce other molecules that help the cell assemble proteins.) The journey from gene to protein is complex and tightly controlled within each cell. It consists of two major steps: transcription and translation. Together, transcription and translation are known as gene expression.

During the process of transcription, the information stored in a gene's DNA is transferred to a similar molecule called RNA (ribonucleic acid) in the cell nucleus. Both RNA and DNA are made up of a chain of nucleotide bases, but they have slightly different chemical properties. The type of RNA that contains the information for making a protein is called messenger RNA (mRNA) because it carries the information, or message, from the DNA out of the nucleus into the cytoplasm.

Translation, the second step in getting from a gene to a protein, takes place in the cytoplasm. The mRNA interacts with a specialized complex called a ribosome, which "reads" the sequence of mRNA bases. Each sequence of three bases, called a codon, usually codes for one particular amino acid. (Amino acids are the building blocks of proteins.) A type of RNA called transfer RNA (tRNA) assembles the protein, one amino acid at a time. Protein assembly continues until the ribosome encounters a "stop" codon (a sequence of three bases that does not code for an amino acid).

The flow of information from DNA to RNA to proteins is one of the fundamental principles of molecular biology. It is so important that it is sometimes called the "central dogma."
Through the processes of transcription and translation, information from genes is used to make proteins.

For more information about making proteins:

The Genetic Science Learning Center at the University of Utah offers an interactive introduction to transcription and translation (https://learn.genetics.utah.edu/content/basics/dna).

North Dakota State University's Virtual Cell Animation Collection offers videos that illustrate the processes of transcription (http://vcell.ndsu.nodak.edu/animations/transcription/movie-flash.htm) and translation (http://vcell.ndsu.nodak.edu/animations/translation/movie-flash.htm).

The New Genetics (https://www.nigms.nih.gov/education/Booklets/the-new-genetics/Pages/Home.aspx), a publication of the National Institute of General Medical Sciences, includes discussions of transcription and translation.

Biointeractive from the Howard Hughes Medical Institute illustrates the stages in the flow of information from DNA to RNA to protein. (https://www.biointeractive.org/classroom-resources/central-dogma-and-genetic-medicine) This tool also gives examples of how modern technologies that target the different stages are used to treat genetic diseases.
Can genes be turned on and off in cells?

Each cell expresses, or turns on, only a fraction of its genes. The rest of the genes are repressed, or turned off. The process of turning genes on and off is known as gene regulation. Gene regulation is an important part of normal development. Genes are turned on and off in different patterns during development to make a brain cell look and act different from a liver cell or a muscle cell, for example. Gene regulation also allows cells to react quickly to changes in their environments. Although we know that the regulation of genes is critical for life, this complex process is not yet fully understood.

Gene regulation can occur at any point during gene expression, but most commonly occurs at the level of transcription (when the information in a gene’s DNA is transferred to mRNA). Signals from the environment or from other cells activate proteins called transcription factors. These proteins bind to regulatory regions of a gene and increase or decrease the level of transcription. By controlling the level of transcription, this process can determine the amount of protein product that is made by a gene at any given time.

For more information about gene regulation:

The National Human Genome Research Institute provides a definition of gene regulation (https://www.genome.gov/genetics-glossary/Gene-Regulation) in their Talking Glossary of Genetic Terms.

The Genetic Science Learning Center at the University of Utah offers an explanation of gene expression as it relates to disease risk (https://learn.genetics.utah.edu/content/science/expression/).

Additional information about gene expression (https://www.yourgenome.org/facts/what-is-gene-expression) is available from yourgenome.org, a service of the Wellcome Trust.

The Khan Academy has an educational unit on gene regulation (https://www.khanacademy.org/science/biology/gene-regulation), including videos about gene regulation in bacteria and eukaryotes.
What is epigenetics?

DNA modifications that do not change the DNA sequence can affect gene activity. Chemical compounds that are added to single genes can regulate their activity; these modifications are known as epigenetic changes. The epigenome comprises all of the chemical compounds that have been added to the entirety of one’s DNA (genome) as a way to regulate the activity (expression) of all the genes within the genome. The chemical compounds of the epigenome are not part of the DNA sequence, but are on or attached to DNA (“epi-“ means above in Greek). Epigenetic modifications remain as cells divide and in some cases can be inherited through the generations. Environmental influences, such as a person’s diet and exposure to pollutants, can also impact the epigenome.

Epigenetic changes can help determine whether genes are turned on or off and can influence the production of proteins in certain cells, ensuring that only necessary proteins are produced. For example, proteins that promote bone growth are not produced in muscle cells. Patterns of epigenetic modification vary among individuals, different tissues within an individual, and even different cells.

A common type of epigenetic modification is called methylation. Methylation involves attaching small molecules called methyl groups, each consisting of one carbon atom and three hydrogen atoms, to segments of DNA. When methyl groups are added to a particular gene, that gene is turned off or silenced, and no protein is produced from that gene.

Because errors in the epigenetic process, such as modifying the wrong gene or failing to add a compound to a gene, can lead to abnormal gene activity or inactivity, they can cause genetic disorders. Conditions including cancers, metabolic disorders, and degenerative disorders have all been found to be related to epigenetic errors.

Scientists continue to explore the relationship between the genome and the chemical compounds that modify it. In particular, they are studying what effect the modifications have on gene function, protein production, and human health.
The epigenome is made up of chemical compounds and proteins that can attach to DNA and direct such actions as turning genes on or off, controlling the production of proteins in particular cells.

For more information about the epigenome:

The National Institutes of Health (NIH) offers the NIH Roadmap Epigenomics Project (http://www.roadmapepigenomics.org/), which provides epigenome maps of a variety of cells to begin to assess the relationship between epigenomics and human disease.
Human Epigenome Toolset (http://www.genboree.org/site/epigenomics_toolset) from Baylor College of Medicine allows for comparison of the epigenomes of many species and cell types.

Ongoing research is being done with the Human Epigenome Project (http://www.epigenome.org/).

The University of Utah provides an interactive epigenetics tutorial (https://learn.genetics.utah.edu/content/epigenetics/).

Many tools for understanding epigenomics are available through the NIH Common Fund Epigenomics Project (https://commonfund.nih.gov/epigenomics/).
How do cells divide?

There are two types of cell division: mitosis and meiosis. Most of the time when people refer to “cell division,” they mean mitosis, the process of making new body cells. Meiosis is the type of cell division that creates egg and sperm cells.

Mitosis is a fundamental process for life. During mitosis, a cell duplicates all of its contents, including its chromosomes, and splits to form two identical daughter cells. Because this process is so critical, the steps of mitosis are carefully controlled by a number of genes. When mitosis is not regulated correctly, health problems such as cancer can result.

The other type of cell division, meiosis, ensures that humans have the same number of chromosomes in each generation. It is a two-step process that reduces the chromosome number by half—from 46 to 23—to form sperm and egg cells. When the sperm and egg cells unite at conception, each contributes 23 chromosomes so the resulting embryo will have the usual 46. Meiosis also allows genetic variation through a process of DNA shuffling while the cells are dividing.

Mitosis and meiosis, the two types of cell division.
For more information about cell division:

North Dakota State University's Virtual Cell Animation Collection offers videos that illustrate the processes of mitosis (http://vcell.ndsu.nodak.edu/animations/mitosis/movie-flash.htm) and meiosis (http://vcell.ndsu.nodak.edu/animations/meiosis/movie-flash.htm).

Yourgenome from the Wellcome Trust outlines the similarities and differences between mitosis and meiosis (https://www.yourgenome.org/facts/mitosis-versus-meiosis).
How do genes control the growth and division of cells?

A variety of genes are involved in the control of cell growth and division. The cell cycle is the cell’s way of replicating itself in an organized, step-by-step fashion. Tight regulation of this process ensures that a dividing cell’s DNA is copied properly, any errors in the DNA are repaired, and each daughter cell receives a full set of chromosomes. The cycle has checkpoints (also called restriction points), which allow certain genes to check for problems and halt the cycle for repairs if something goes wrong.

If a cell has an error in its DNA that cannot be repaired, it may undergo programmed cell death (apoptosis (image on page 83)). Apoptosis is a common process throughout life that helps the body get rid of cells it doesn’t need. Cells that undergo apoptosis break apart (image on page 83) and are recycled by a type of white blood cell called a macrophage. Apoptosis protects the body by removing genetically damaged cells that could lead to cancer, and it plays an important role in the development of the embryo and the maintenance of adult tissues.

Cancer results from a disruption of the normal regulation of the cell cycle. When the cycle proceeds without control, cells can divide without order and accumulate genetic defects that can lead to a cancerous tumor (image on page 84).

For more information about cell growth and division:

A damaged cell may undergo apoptosis if it is unable to repair genetic errors.

When a cell undergoes apoptosis, white blood cells called macrophages consume cell debris.
Cancer results when cells accumulate genetic errors and multiply without control.
How do geneticists indicate the location of a gene?

Geneticists use maps to describe the location of a particular gene on a chromosome. One type of map uses the cytogenetic location to describe a gene’s position. The cytogenetic location is based on a distinctive pattern of bands created when chromosomes are stained with certain chemicals. Another type of map uses the molecular location, a precise description of a gene’s position on a chromosome. The molecular location is based on the sequence of DNA building blocks (base pairs) that make up the chromosome.

Cytogenetic location

Geneticists use a standardized way of describing a gene's cytogenetic location. In most cases, the location describes the position of a particular band on a stained chromosome:

17q12

It can also be written as a range of bands, if less is known about the exact location:

17q12-q21
The combination of numbers and letters provide a gene's “address” on a chromosome. This address is made up of several parts:

- The chromosome on which the gene can be found. The first number or letter used to describe a gene's location represents the chromosome. Chromosomes 1 through 22 (the autosomes) are designated by their chromosome number. The sex chromosomes are designated by X or Y.

- The arm of the chromosome. Each chromosome is divided into two sections (arms) based on the location of a narrowing (constriction) called the centromere. By convention, the shorter arm is called p, and the longer arm is called q. The chromosome arm is the second part of the gene's address. For example, 5q is the long arm of chromosome 5, and Xp is the short arm of the X chromosome.

- The position of the gene on the p or q arm. The position of a gene is based on a distinctive pattern of light and dark bands that appear when the chromosome is stained in a certain way. The position is usually designated by two digits (representing a region and a band), which are sometimes followed by a decimal point and one or more additional digits (representing sub-bands within a light or dark area). The number indicating the gene position increases with distance from the centromere. For example: 14q21 represents position 21 on the long arm of chromosome 14. 14q21 is closer to the centromere than 14q22.

Sometimes, the abbreviations “cen” or “ter” are also used to describe a gene’s cytogenetic location. “Cen” indicates that the gene is very close to the centromere. For example, 16pcen refers to the short arm of chromosome 16 near the centromere. “Ter” stands for terminus, which indicates that the gene is very close to the end of the p or q arm. For example, 14qter refers to the tip of the long arm of chromosome 14. (“Tel” is also sometimes used to describe a gene's location. “Tel” stands for telomeres, which are at the ends of each chromosome. The abbreviations “tel” and “ter” refer to the same location.)
The CFTR gene is located on the long arm of chromosome 7 at position 7q31.2.

Molecular location

The Human Genome Project, an international research effort completed in 2003, determined the sequence of base pairs for each human chromosome. This sequence information allows researchers to provide a more specific address than the cytogenetic location for many genes. A gene’s molecular address pinpoints the location of that gene in terms of base pairs. It describes the gene’s precise position on a chromosome and indicates the size of the gene. Knowing the molecular location also allows researchers to determine exactly how far a gene is from other genes on the same chromosome.

Different groups of researchers often present slightly different values for a gene’s molecular location. Researchers interpret the sequence of the human genome using a variety of methods, which can result in small differences in a gene’s molecular address. Genetics Home Reference presents data from NCBI (https://www.ncbi.nlm.nih.gov/sites/entrez?db=gene) for the molecular location of genes.
For more information on genetic mapping:

Gene Groups

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What are gene groups?</td>
<td>90</td>
</tr>
<tr>
<td>Blood group antigens</td>
<td>91</td>
</tr>
<tr>
<td>Collagen proteoglycans</td>
<td>94</td>
</tr>
<tr>
<td>Complement system</td>
<td>96</td>
</tr>
<tr>
<td>Cytochrome p450</td>
<td>98</td>
</tr>
<tr>
<td>Endogenous ligands</td>
<td>101</td>
</tr>
<tr>
<td>Histocompatibility complex</td>
<td>103</td>
</tr>
<tr>
<td>Homeoboxes</td>
<td>105</td>
</tr>
<tr>
<td>Keratins</td>
<td>107</td>
</tr>
<tr>
<td>Mitochondrial respiratory chain complex</td>
<td>109</td>
</tr>
<tr>
<td>Myosins</td>
<td>111</td>
</tr>
<tr>
<td>Transfer RNAs</td>
<td>113</td>
</tr>
</tbody>
</table>
What are gene groups?

A gene group is a set of genes that share important characteristics. In many cases, genes in a group share a similar sequence of DNA building blocks (nucleotides). These genes provide instructions for making products (such as proteins) that have a similar structure or function. In other cases, dissimilar genes are grouped together because proteins produced from these genes work together as a unit or participate in the same process.

Classifying individual genes into groups helps researchers describe how genes are related to each other. Researchers can use gene groups to predict the function of newly identified genes based on their similarity to known genes. Similarities among genes in a group can also be used to predict where and when a specific gene is active (expressed). Additionally, gene groups may provide clues for identifying genes that are involved in particular diseases.

Sometimes not enough is known about a gene to assign it to an established group. In other cases, genes may fit into more than one group. No formal guidelines define the criteria for grouping genes together. Classification systems for genes continue to evolve as scientists learn more about the structure and function of genes and the relationships between them.

For more information about gene groups:

The HUGO Gene Nomenclature Committee (https://www.genenames.org/data/genegroup/) (HGNC) has classified many human genes into groups. Each grouping is given a name and symbol, and contains a table of the genes in that group.

The Gene Ontology (http://geneontology.org/) database lists the protein products of genes by their location within the cell (cellular component), biological process, and molecular function.

The Reactome (https://reactome.org/) database classifies the protein products of genes based on their participation in specific biological pathways. For example, this resource provides tables of genes involved in controlled cell death (apoptosis), cell division, and DNA repair.
Blood group antigens

Blood is classified into different groups according to the presence or absence of molecules called antigens on the surface of every red blood cell in a person's body. Antigens determine blood type and can either be proteins or complexes of sugar molecules (polysaccharides). The genes in the blood group antigen group provide instructions for making antigen proteins. Blood group antigen proteins serve a variety of functions within the cell membrane of red blood cells. These protein functions include transporting other proteins and molecules into and out of the cell, maintaining cell structure, attaching to other cells and molecules, and participating in chemical reactions.

Blood group antigens play a role in recognizing foreign cells in the bloodstream. For example, if a person with blood type A receives a blood transfusion with blood type B, the recipient's immune system will recognize the type B cells as foreign and mount an immune response. Antibodies against type B blood cells (anti-B antibodies) are made, which attack and destroy the type B blood cells. This sort of blood type mismatch can lead to illness. Some blood types are associated with more severe immune reactions than others. The blood type of donated cells, or tissues in the case of organ donation, is checked before being given to a recipient to prevent this immune response.

There are 29 recognized blood groups, most involving only one gene. Variations (polymorphisms) within the genes that determine blood group give rise to the different antigens for a particular blood group protein. For example, changes in a few DNA building blocks (nucleotides) in the ABO gene give rise to the A, B, and O blood types of the ABO blood group. The changes that occur in the genes that determine blood group typically affect only blood type and are not associated with adverse health conditions, although exceptions do occur.

Example of a gene in this gene group: SLC4A1, ABCG2, XK

The HUGO Gene Nomenclature Committee (HGNC) provides an index of gene groups (https://www.genenames.org/data/genegroup/#!/group/454) and their member genes.

References

Byrne KM, Byrne PC. Review: other blood group systems--Diego,Yt, Xg, Scianna, Dombrock, Colton, Landsteiner-Wiener, and Indian.

Yamamoto F. Review: ABO blood group system--ABH oligosaccharide antigens, anti-A and anti-B, A and B glycosyltransferases, and ABO genes.

Learn more about the blood group antigens gene group:

Medical Genetics Summaries from the National Center for Biotechnology Information, NLM, NIH: ABO Blood Group (https://www.ncbi.nlm.nih.gov/books/NBK100894/)

Emory University: The Genetics of Blood Type (http://genetics.emory.edu/documents/resources/factsheet43.pdf)
Collagen proteoglycans

Genes in this group provide instructions for making the protein component of large molecules called collagen proteoglycans. A proteoglycan is a molecule that is made up of a core protein attached to one or more sugar molecules called glycosaminoglycan (GAG) chains. The collagen proteoglycans gene group is a subset of a larger gene group known as the proteoglycan supergroup.

The many different types of proteoglycans are classified according to their core protein. The core protein produced by members of the collagen proteoglycans gene group is collagen. Collagens are a group of proteins that strengthen and support connective tissues, such as skin, bone, cartilage, tendons, and ligaments. Collagen proteoglycans are major components of the extracellular matrix, which is an intricate lattice of proteins and other molecules that forms in the spaces between cells. The collagen proteoglycans bind to a variety of other proteins in the extracellular matrix, including other forms of collagen.

Examples of genes in this gene group: COL9A1, COL9A2, COL9A3

The HUGO Gene Nomenclature Committee (HGNC) provides an index of gene groups (https://www.genenames.org/data/genegroup/#!/#group/575) and their member genes.

References

van der Rest M, Mayne R. Type IX collagen proteoglycan from cartilage is covalently cross-linked to type II collagen. J Biol Chem. 1988 Feb

Learn more about the collagen proteoglycan gene group:

Complement system

Genes in the complement system group provide instructions for making proteins involved in the complement system, an essential part of the body’s immune response. The complement system is composed of more than 20 proteins that work together to destroy foreign invaders (such as bacteria and viruses), trigger inflammation, and remove debris from cells and tissues. This system must be carefully regulated so it targets only unwanted materials and does not attack the body’s healthy cells.

Several diseases have been associated with changes in complement system genes. Each of these genetic changes typically results in a shortage (deficiency) of a single complement system protein. These deficiencies disrupt the normal activity or regulation of the complement system, often leading to an increased risk of bacterial infection or recurrent episodes of severe swelling (angioedema). Complement system defects have also been found in autoimmune disorders such as systemic lupus erythematosus. Autoimmune disorders occur when the immune system malfunctions and attacks the body’s own tissues and organs.

Examples of genes in this gene group: C2, C3, C8A, C8B, CFH, CFHR5, CFI, COLEC10, COLEC11, ELANE, F2, ITGB2, MASP1, MBL2, SERPING1

The HUGO Gene Nomenclature Committee (HGNC) provides an index of gene groups (https://www.genenames.org/data/genegroup/#/group/492) and their member genes.

References

Learn more about the complement gene group:

Cytochrome p450

Enzymes produced from the cytochrome P450 genes are involved in the formation (synthesis) and breakdown (metabolism) of various molecules and chemicals within cells. Cytochrome P450 enzymes play a role in the synthesis of many molecules including steroid hormones, certain fats (cholesterol and other fatty acids), and acids used to digest fats (bile acids). Additional cytochrome P450 enzymes metabolize external substances, such as medications that are ingested, and internal substances, such as toxins that are formed within cells. There are approximately 60 cytochrome P450 genes in humans.

Cytochrome P450 enzymes are primarily found in liver cells but are also located in cells throughout the body. Within cells, cytochrome P450 enzymes are located in a structure involved in protein processing and transport (endoplasmic reticulum) and the energy-producing centers of cells (mitochondria). The enzymes found in mitochondria are generally involved in the synthesis and metabolism of internal substances, while enzymes in the endoplasmic reticulum usually metabolize external substances, primarily medications and environmental pollutants.

Common variations (polymorphisms) in cytochrome P450 genes can affect the function of the enzymes. The effects of polymorphisms are most prominently seen in the breakdown of medications. Depending on the gene and the polymorphism, drugs can be metabolized quickly or slowly. If a cytochrome P450 enzyme metabolizes a drug slowly, the drug stays active longer and less is needed to get the desired effect. A drug that is quickly metabolized is broken down sooner and a higher dose might be needed to be effective. Cytochrome P450 enzymes account for 70 percent to 80 percent of enzymes involved in drug metabolism.

Each cytochrome P450 gene is named with CYP, indicating that it is part of the cytochrome P450 gene group. The gene is also given a number associated with a specific group within the gene group, a letter representing the gene's subgroup, and a number assigned to the specific gene within the subgroup. For example, the cytochrome P450 gene that is in group 27, subgroup A, gene 1 is written as CYP27A1.

Diseases caused by mutations in cytochrome P450 genes typically involve the buildup of substances in the body that are harmful in large amounts or that prevent other necessary molecules from being produced.
Examples of genes in this gene group: *CYP1B1, CYP2C9, CYP2C19, CYP2R1, CYP4V2, CYP7B1, CYP11B1, CYP11B2, CYP17A1, CYP19A1, CYP21A2, CYP24A1, CYP27A1, CYP27B1, TBXAS1*

The HUGO Gene Nomenclature Committee (HGNC) provides an index of gene groups (https://www.genenames.org/data/genegroup/#/group/862) and their member genes.

References

Learn more about the cytochrome p450 gene group:

Biochemistry (fifth edition, 2002): Cytochrome P450 Mechanism (Figure) (https://www.ncbi.nlm.nih.gov/books/NBK22339/figure/A3662/)

Indiana University: Cytochrome P450 Drug-Interaction Table (https://drug-interactions.medicine.iu.edu/Main-Table.aspx)

Human Cytochrome P450 (CYP) Allele Nomenclature Database (https://www.pharmvar.org/genes)
Endogenous ligands

Genes in this group provide instructions for making specialized proteins called endogenous ligands. A ligand is a protein that attaches (binds) to another protein called a receptor; receptor proteins have specific sites into which the ligands fit like keys into locks. Endogenous ligands are those that are produced in the body, not those introduced into the body, such as certain drugs.

Together, ligands and their receptors trigger signals that affect cell development and function. Alterations in ligands can impair cell signaling and change the normal activities of cells. Because ligands mediate many different functions in the body, mutations in genes in the endogenous ligands gene group can have a variety of effects.

Examples of genes in this gene group: AGT, AMH, APP, AVP, BDNF, C3, CD40LG, EDN3, F2, FGA, FGB, FGF8, FGG, FN1, GDF3, GH1, HTT, IL1A, INS, NDP, POMC, PROK2, PSAP, RB1, RSPO4, SAA1, TGFB1, TGFB2, TGFB3, THPO, TSHB, VWF, WNT3, WNT4, WNT5A

The HUGO Gene Nomenclature Committee (HGNC) provides an index of gene groups (https://www.genenames.org/data/genegroup/#!/group/542) and their member genes.

References

Kristiansen K. Molecular mechanisms of ligand binding, signaling, and regulation within the supergroup of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function.

Learn more about the endogenous ligands gene group:

Histocompatibility complex

The histocompatibility complex gene group provides instructions for making a group of related proteins known as the human leukocyte antigen (HLA) complex. The HLA complex helps the immune system distinguish the body's own proteins from proteins made by foreign invaders such as viruses and bacteria.

HLA is the human version of the major histocompatibility complex (MHC), a gene group that occurs in many species. In humans, the MHC complex consists of more than 200 genes located close together on chromosome 6. Genes in this complex are categorized into three basic groups: class I, class II, and class III.

Humans have three main MHC class I genes, known as *HLA-A*, *HLA-B*, and *HLA-C*. The proteins produced from these genes are present on the surface of almost all cells. On the cell surface, these proteins are bound to protein fragments (peptides) that have been exported from within the cell. MHC class I proteins display these peptides to the immune system. If the immune system recognizes the peptides as foreign (such as viral or bacterial peptides), it responds by triggering the infected cell to self-destruct.

There are six main MHC class II genes in humans: *HLA-DPA1*, *HLA-DPB1*, *HLA-DQA1*, *HLA-DQB1*, *HLA-DRA*, and *HLA-DRB1*. MHC class II genes provide instructions for making proteins that are present almost exclusively on the surface of certain immune system cells. Like MHC class I proteins, these proteins display peptides to the immune system.

The proteins produced from MHC class III genes have somewhat different functions; they are involved in inflammation and other immune system activities. The functions of some MHC genes are unknown.

Histocompatibility complex genes have many possible variations, allowing each person's immune system to react to a wide range of foreign invaders. Some histocompatibility complex genes have hundreds of identified versions (alleles), each of which is given a particular number (such as HLA-B27). Closely related alleles are categorized together; for example, at least 40 very similar alleles are subtypes of HLA-B27. These subtypes are designated as *HLA-B*\(^*\)2701 to *HLA-B*\(^*\)2743.

More than 100 diseases have been associated with different alleles of histocompatibility complex genes. For example, the HLA-B27 allele increases the risk of developing an inflammatory joint disease called ankylosing spondylitis. Many other disorders involving abnormal immune function and some forms of cancer have also been associated with specific HLA alleles. However, it is often unclear what role histocompatibility complex genes play in the risk of developing these diseases.

page 103
The HUGO Gene Nomenclature Committee (HGNC) provides an index of gene groups (https://www.genenames.org/data/genegroup/#/group/588) and their member genes.

References

Learn more about the human leukocyte antigens gene group:

EMBL-EBI: IMGT/HLA Database (https://www.ebi.ac.uk/ipd/imgt/hla/)
Homeoboxes

Homeobox genes are a large group of similar genes that direct the formation of many body structures during early embryonic development. In humans, the homeobox gene group contains an estimated 235 functional genes and 65 pseudogenes (structurally similar genes that do not provide instructions for making proteins). Homeobox genes are present on every human chromosome, and they often appear in clusters. Many classes and subgroups of homeobox genes have been described, although these groupings are used inconsistently.

Homeobox genes contain a particular DNA sequence that provides instructions for making a string of 60 protein building blocks (amino acids) known as the homeodomain. Most homeodomain-containing proteins act as transcription factors, which means they bind to and control the activity of other genes. The homeodomain is the part of the protein that attaches (binds) to specific regulatory regions of the target genes.

Genes in the homeobox group are involved in a wide range of critical activities during development. These activities include directing the formation of limbs and organs along the anterior-posterior axis (the imaginary line that runs from head to tail in animals) and regulating the process by which cells mature to carry out specific functions (differentiation). Some homeobox genes act as tumor suppressors, which means they help prevent cells from growing and dividing too rapidly or in an uncontrolled way.

Because homeobox genes have so many important functions, mutations in these genes are responsible for a variety of developmental disorders. For example, mutations in the HOX group of homeobox genes typically cause limb malformations. Changes in PAX homeobox genes often result in eye disorders, and changes in MSX homeobox genes cause abnormal head, face, and tooth development. Additionally, increased or decreased activity of certain homeobox genes has been associated with several forms of cancer later in life.

Examples of genes in this gene group: ADNP, ALX1, ALX3, ALX4, ARX, CRX, HESX1, HOXA13, HOXB13, LHX1, LMX1B, MEOX1, MSX1, MSX2, NKX2-1, OTX2, PAX3, PAX6, PHOX2A, PHOX2B, PITX1, PITX2, POU3F4, PROP1, SHOX, SIX1, SIX3, SIX5, TGIF1, ZEB2

The HUGO Gene Nomenclature Committee (HGNC) provides an index of gene groups (https://www.genenames.org/data/genegroup/#!/group/516) and their member genes.
References

Learn more about the homeoboxes gene group:

National Human Genome Research Institute, NIH: Homeodomain Resource (https://research.nhgri.nih.gov/homeodomain/)

Keratins

Genes in the KRT group provide instructions for making proteins called keratins. Keratins are a group of tough, fibrous proteins that form the structural framework of epithelial cells, which are cells that line the surfaces and cavities of the body. Epithelial cells make up tissues such as the hair, skin, and nails. These cells also line the internal organs and are an important part of many glands.

Keratins are best known for providing strength and resilience to cells that form the hair, skin, and nails. These proteins allow tissues to resist damage from friction and minor trauma, such as rubbing and scratching. Keratins are also involved in several other critical cell functions, including cell movement (migration), regulation of cell size, cell growth and division (proliferation), wound healing, and transport of materials within cells.

Humans have at least 54 functional keratin genes, which are divided into type I and type II keratins. Most of the type I keratin genes, designated KRT9 through KRT20, are located in a cluster on chromosome 17. The type II keratin genes, designated KRT1 through KRT8, are found in another cluster on chromosome 12.

Different combinations of keratin proteins are found in different tissues. In each tissue, a type I keratin pairs with a type II keratin to form a structure called a heterodimer. Heterodimers interact with one another to form strong, flexible fibers called keratin intermediate filaments. These filaments assemble into a dense network, which forms the structural framework of cells.

Mutations in at least 20 KRT genes have been found to cause human diseases affecting the skin, hair, nails, and related tissues. The most well-studied of these diseases include epidermolysis bullosa simplex (EBS) and pachyonychia congenita. Mutations in KRT genes alter the structure of keratins, which prevent them from forming an effective network of keratin intermediate filaments. Without this network, cells become fragile and are easily damaged, making tissues less resistant to friction and minor trauma. Even normal activities such as walking can cause skin cells to break down, resulting in the formation of painful blisters and calluses.

Examples of genes in this gene group: KRT1, KRT3, KRT4, KRT5, KRT6A, KRT6B, KRT6C, KRT10, KRT12, KRT13, KRT14, KRT16, KRT17, KRT81, KRT83, KRT86

The HUGO Gene Nomenclature Committee (HGNC) provides an index of gene groups (https://www.genenames.org/data/genegroup/#!/group/1109) and their member genes.
References

Learn more about the keratins gene group:

Mitochondrial respiratory chain complex

Genes in the mitochondrial respiratory chain complex gene group provide instructions for proteins involved in oxidative phosphorylation, also called the respiratory chain. Oxidative phosphorylation is an important cellular process that uses oxygen and simple sugars to create adenosine triphosphate (ATP), the cell's main energy source. Five protein complexes, made up of several proteins each, are involved in this process. The complexes are named complex I, complex II, complex III, complex IV, and complex V.

Oxidative phosphorylation occurs in mitochondria, which are specialized, energy-producing structures inside cells. Within mitochondria, the five protein complexes are embedded in a tightly folded membrane called the inner mitochondrial membrane. During oxidative phosphorylation, the protein complexes carry out chemical reactions that drive the production of ATP. Specifically, they create an unequal electrical charge on either side of the inner mitochondrial membrane through a step-by-step transfer of negatively charged particles called electrons. This difference in electrical charge provides the energy for ATP production.

Most DNA is contained in a cell's nucleus and is called nuclear DNA. Mitochondria also contain a small amount of DNA, known as mitochondrial DNA. The mitochondrial respiratory chain complex gene group includes genes found in nuclear DNA as well as genes found in mitochondrial DNA. Mutations in either nuclear or mitochondrial genes in the mitochondrial respiratory chain complex gene group can cause disease.

Examples of genes in this gene group: MT-ATP6, MT-CYB, MT-ND1, MT-ND4, MT-ND4L, MT-ND5, MT-ND6, SDHA, SDHB, SDHC, SDHD

The HUGO Gene Nomenclature Committee (HGNC) provides an index of gene groups (https://www.genenames.org/data/genegroup/#/group/639) and their member genes.
References

Learn more about the mitochondrial respiratory chain complex gene group:

Genes in this group provide instructions for making related proteins called myosins. Myosins are often referred to as molecular motors because they use energy to move. They interact with another protein called actin; actin proteins are organized into filaments to form a network (the cytoskeleton) that gives structure to cells and can act as a track for myosin to move along. Some myosin proteins attach (bind) to other proteins and transport them within and between cells along the actin track.

Some myosins are involved in muscle contraction. These myosins interact with other myosin proteins, forming thick filaments. In muscle cells, thick filaments made up of myosin and thin filaments made up of actin compose structures called sarcomeres, which are the basic units of muscle contraction. The overlapping thick and thin filaments bind to each other and release, which allows the filaments to move relative to one another so that muscles can contract. Mutations in genes that provide instructions for making muscle myosins can cause severe abnormalities in the muscles used for movement (skeletal muscles) or in the heart (cardiac) muscle. Cardiac muscle abnormalities can lead to heart failure and sudden death.

Myosin proteins are involved in many cellular functions. Their ability to transport materials and create force through contractions make them important in the process of cell division. Myosins are also involved in cell movement. Some myosins are found in specialized structures in the inner ear known as stereocilia. These myosins are thought to help properly organize the stereocilia. Abnormalities in these myosins can cause deafness.

Examples of genes in this gene group: MYH3, MYH6, MYH7, MYH9, MYH11, MYO5A, MYO5B, MYO7A

The HUGO Gene Nomenclature Committee (HGNC) provides an index of gene groups (https://www.genenames.org/data/genegroup/#!/group/656) and their member genes.

References

Learn more about the myosins gene group:

Molecular Biology of the Cell (fourth edition, 2002): Actin-Based Motor Proteins Are Part of the Myosin Superfamily

Transfer RNAs

Genes in the transfer RNAs gene group provide instructions for making molecules called transfer RNAs (tRNAs). Transfer RNAs are a particular type of RNA, which is a chemical cousin of DNA. These molecules help assemble protein building blocks (amino acids) into functioning proteins. Each tRNA attaches to a particular amino acid. During protein assembly, the tRNA recognizes a specific three-letter sequence (a codon) in the genetic blueprint for making proteins and inserts the amino acid into the appropriate location in the growing protein.

There are two classes of tRNA: cytoplasmic and mitochondrial. Cytoplasmic tRNAs are found in the fluid inside cells (the cytoplasm). These tRNAs help produce proteins from genes located in the DNA in the nucleus of the cell (nuclear DNA). Although most DNA is nuclear, cellular structures called mitochondria have a small amount of their own DNA, called mitochondrial DNA. Proteins produced from genes located in mitochondrial DNA are assembled by mitochondrial tRNAs.

Mutations in transfer RNA genes reduce the ability of the tRNA to add amino acids to proteins, slowing protein production. Mutations that affect mitochondrial tRNAs impair the ability of mitochondria to provide energy for cells or to control blood sugar levels. These mutations can cause a variety of signs and symptoms, including muscle weakness, seizures, neurological problems, hearing loss, and diabetes. Mutations in genes that provide instructions for cytoplasmic tRNAs do not appear to cause disease.

Examples of genes in this gene group: MT-TE, MT-TH, MT-TK, MT-TL1, MT-TS1, MT-TV

The HUGO Gene Nomenclature Committee (HGNC) provides an index of gene groups (https://www.genenames.org/data/genegroup/#/group/478) and their member genes.

References

Learn more about the transfer RNAs gene group:

Inheriting Genetic Conditions

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What does it mean if a disorder seems to run in my family?</td>
<td>116</td>
</tr>
<tr>
<td>Why is it important to know my family medical history?</td>
<td>119</td>
</tr>
<tr>
<td>What are the different ways in which a genetic condition can be inherited?</td>
<td>121</td>
</tr>
<tr>
<td>If a genetic disorder runs in my family, what are the chances that my children will have the condition?</td>
<td>133</td>
</tr>
<tr>
<td>What are reduced penetrance and variable expressivity?</td>
<td>136</td>
</tr>
<tr>
<td>What do geneticists mean by anticipation?</td>
<td>138</td>
</tr>
<tr>
<td>What are genomic imprinting and uniparental disomy?</td>
<td>139</td>
</tr>
<tr>
<td>Are chromosomal disorders inherited?</td>
<td>141</td>
</tr>
<tr>
<td>Why are some genetic conditions more common in particular ethnic groups?</td>
<td>142</td>
</tr>
<tr>
<td>What is heritability?</td>
<td>143</td>
</tr>
</tbody>
</table>
What does it mean if a disorder seems to run in my family?

A particular disorder might be described as “running in a family” if more than one person in the family has the condition. Some disorders that affect multiple family members are caused by gene mutations, which can be inherited (passed down from parent to child). Other conditions that appear to run in families are not caused by mutations in single genes. Instead, environmental factors such as dietary habits or a combination of genetic and environmental factors are responsible for these disorders.

It is not always easy to determine whether a condition in a family is inherited. A genetics professional can use a person’s family history (a record of health information about a person’s immediate and extended family) to help determine whether a disorder has a genetic component. He or she will ask about the health of people from several generations of the family, usually first-, second-, and third-degree relatives.

<table>
<thead>
<tr>
<th>Degrees of relationship</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-degree relatives</td>
<td>Parents, children, brothers, and sisters</td>
</tr>
<tr>
<td>Second-degree relatives</td>
<td>Grandparents, aunts and uncles, nieces and nephews, and grandchildren</td>
</tr>
<tr>
<td>Third-degree relatives</td>
<td>First cousins</td>
</tr>
</tbody>
</table>
This condition affects members in each generation of a family.

For general information about disorders that run in families:

The Genetic Science Learning Center at the University of Utah offers interactive tools about disorders that run in families (https://learn.genetics.utah.edu/content/history/).

Why is it important to know my family medical history?

A family medical history is a record of health information about a person and his or her close relatives. A complete record includes information from three generations of relatives, including children, brothers and sisters, parents, aunts and uncles, nieces and nephews, grandparents, and cousins.

Families have many factors in common, including their genes, environment, and lifestyle. Together, these factors can give clues to medical conditions that may run in a family. By noticing patterns of disorders among relatives, healthcare professionals can determine whether an individual, other family members, or future generations may be at an increased risk of developing a particular condition.

A family medical history can identify people with a higher-than-usual chance of having common disorders, such as heart disease, high blood pressure, stroke, certain cancers, and diabetes. These complex disorders are influenced by a combination of genetic factors, environmental conditions, and lifestyle choices. A family history also can provide information about the risk of rarer conditions caused by mutations in a single gene, such as cystic fibrosis and sickle cell disease.

While a family medical history provides information about the risk of specific health concerns, having relatives with a medical condition does not mean that an individual will definitely develop that condition. On the other hand, a person with no family history of a disorder may still be at risk of developing that disorder.

Knowing one’s family medical history allows a person to take steps to reduce his or her risk. For people at an increased risk of certain cancers, healthcare professionals may recommend more frequent screening (such as mammography or colonoscopy) starting at an earlier age. Healthcare providers may also encourage regular checkups or testing for people with a medical condition that runs in their family. Additionally, lifestyle changes such as adopting a healthier diet, getting regular exercise, and quitting smoking help many people lower their chances of developing heart disease and other common illnesses.

The easiest way to get information about family medical history is to talk to relatives about their health. Have they had any medical problems, and when did they occur? A family gathering could be a good time to discuss these issues. Additionally, obtaining medical records and other documents (such as obituaries and death certificates) can help complete a family medical history. It is important to keep this information up-to-date and to share it with a healthcare professional regularly.
For more information about family medical history:

Educational resources related to information about family history (https://medlineplus.gov/familyhistory.html) is available from MedlinePlus.

The Centers for Disease Control and Prevention's (CDC) Office of Public Health Genomics provides information about the importance of family medical history (https://www.cdc.gov/genomics/famhistory/). This resource also includes links to publications, reports, and tools for recording family health information.

The Office of the Surgeon General offers a tool called My Family Health Portrait (https://phgkb.cdc.gov/FHH/html/index.html) that allows you to enter, print, and update your family health history.

The Genetic Alliance also offers a list of links to family history resources (http://www.geneticalliance.org/programs/genesinlife/fhh).
What are the different ways in which a genetic condition can be inherited?

Some genetic conditions are caused by mutations in a single gene. These conditions are usually inherited in one of several patterns, depending on the gene involved:

Patterns of inheritance

<table>
<thead>
<tr>
<th>Inheritance pattern</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autosomal dominant</td>
<td>One mutated copy of the gene in each cell is sufficient for a person to be affected by an autosomal dominant disorder. In some cases, an affected person inherits the condition from an affected parent (image on page 125). In others, the condition may result from a new mutation (image on page 126) in the gene and occur in people with no history of the disorder in their family.</td>
<td>Huntington disease, Marfan syndrome</td>
</tr>
<tr>
<td>Autosomal recessive</td>
<td>In autosomal recessive inheritance (image on page 127), both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. Autosomal recessive disorders are typically not seen in every generation of an affected family.</td>
<td>cystic fibrosis, sickle cell disease</td>
</tr>
<tr>
<td>Inheritance Pattern</td>
<td>Description</td>
<td>Examples</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>X-linked dominant</td>
<td>X-linked dominant (image on page 128) disorders are caused by mutations in genes on the X chromosome, one of the two sex chromosomes in each cell. In females (who have two X chromosomes), a mutation in one of the two copies of the gene in each cell is sufficient to cause the disorder. In males (who have only one X chromosome), a mutation in the only copy of the gene in each cell causes the disorder. In most cases, males experience more severe symptoms of the disorder than females. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons (no male-to-male transmission).</td>
<td>fragile X syndrome</td>
</tr>
<tr>
<td>X-linked recessive</td>
<td>X-linked recessive (image on page 129) disorders are also caused by mutations in genes on the X chromosome. In males (who have only one X chromosome), one altered copy of the gene in each cell is sufficient to cause the condition. In females (who have two X chromosomes), a mutation would have to occur in both copies of the gene to cause the disorder. Because it is unlikely that females will have two altered copies of this gene, males are affected by X-linked recessive disorders much more frequently than females. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons (no male-to-male transmission).</td>
<td>hemophilia, Fabry disease</td>
</tr>
<tr>
<td>Y-linked</td>
<td>A condition is considered Y-linked (image on page 130) if the mutated gene that causes the disorder is located on the Y chromosome, one of the two sex chromosomes in each of a male's cells. Because only males have a Y chromosome, in Y-linked inheritance, a mutation can only be passed from father to son.</td>
<td>Y chromosome infertility, some cases of Swyer syndrome</td>
</tr>
<tr>
<td>Inheritance pattern</td>
<td>Description</td>
<td>Examples</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>Codominant</td>
<td>In codominant inheritance (image on page 131), two different versions (alleles) of a gene are expressed, and each version makes a slightly different protein. Both alleles influence the genetic trait or determine the characteristics of the genetic condition.</td>
<td>ABO blood group, alpha-1 antitrypsin deficiency</td>
</tr>
<tr>
<td>Mitochondrial</td>
<td>Mitochondrial inheritance (image on page 132), also known as maternal inheritance, applies to genes in mitochondrial DNA. Mitochondria, which are structures in each cell that convert molecules into energy, each contain a small amount of DNA. Because only egg cells contribute mitochondria to the developing embryo, only females can pass on mitochondrial mutations to their children. Conditions resulting from mutations in mitochondrial DNA can appear in every generation of a family and can affect both males and females, but fathers do not pass these disorders to their daughters or sons.</td>
<td>Leber hereditary optic neuropathy (LHON)</td>
</tr>
</tbody>
</table>

Many health conditions are caused by the combined effects of multiple genes (described as polygenic) or by interactions between genes and the environment. Such disorders usually do not follow the patterns of inheritance listed above. Examples of conditions caused by multiple genes or gene/environment interactions include heart disease, type 2 diabetes, schizophrenia, and certain types of cancer. For more information, please see What are complex or multifactorial disorders? on page 57

Disorders caused by changes in the number or structure of chromosomes also do not follow the straightforward patterns of inheritance listed above. To read about how chromosomal conditions occur, please see Are chromosomal disorders inherited? on page 141

Other genetic factors sometimes influence how a disorder is inherited. For an example, please see What are genomic imprinting and uniparental disomy? on page 139
For more information about inheritance patterns:

The Centre for Genetics Education provides information about many of the inheritance patterns outlined above:

EuroGentest also offers explanations of Mendelian inheritance patterns:

In this example, a man with an autosomal dominant disorder has two affected children and two unaffected children.
In this example, a child with an autosomal dominant condition has the disorder as a result of a new (de novo) mutation that occurred during the formation of an egg or sperm cell or early in embryonic development.
In this example, two unaffected parents each carry one copy of a gene mutation for an autosomal recessive disorder. They have one affected child and three unaffected children, two of which carry one copy of the gene mutation.
In the example on the left, a father with an X-linked dominant disorder has two affected daughters and two unaffected sons. On the right, a mother with an X-linked dominant disorder has two affected children and two unaffected children.
In the example on the left, a father with an X-linked recessive condition has two daughters that are carriers of the causative mutation. On the right, a mother who is a carrier of an X-linked recessive disorder has one affected son and one daughter who is also a carrier.
In this example, a father with a Y-linked condition has two affected sons. His daughters are unaffected.
The ABO blood group is a major system for classifying blood types in humans. Blood type AB is inherited in a codominant pattern. In this example, a father with blood type A and a mother with blood type B have four children, each with a different blood type: A, AB, B, and O.
In the family on the left, a woman with a disorder caused by a mutation in mitochondrial DNA and her unaffected husband have children who are all affected by the condition. In the family on the right, a man with a condition resulting from a mutation in mitochondrial DNA and his unaffected wife have no affected children.
If a genetic disorder runs in my family, what are the chances that my children will have the condition?

When a genetic disorder is diagnosed in a family, family members often want to know the likelihood that they or their children will develop the condition. This can be difficult to predict in some cases because many factors influence a person's chances of developing a genetic condition. One important factor is how the condition is inherited. For example:

- **Autosomal dominant inheritance:** A person affected by an autosomal dominant disorder (image on page 125) has a 50 percent chance of passing the mutated gene to each child. The chance that a child will not inherit the mutated gene is also 50 percent. However, in some cases an autosomal dominant disorder results from a new (de novo) mutation (image on page 126) that occurs during the formation of egg or sperm cells or early in embryonic development. In these cases, the child's parents are unaffected, but the child may pass on the condition to his or her own children.

- **Autosomal recessive inheritance:** Two unaffected people who each carry one copy of the mutated gene for an autosomal recessive disorder (image on page 127) (carriers) have a 25 percent chance with each pregnancy of having a child affected by the disorder. The chance with each pregnancy of having an unaffected child who is a carrier of the disorder is 50 percent, and the chance that a child will not have the disorder and will not be a carrier is 25 percent.

- **X-linked dominant inheritance:** The chance of passing on an X-linked dominant condition (image on page 128) differs between men and women because men have one X chromosome and one Y chromosome, while women have two X chromosomes. A man passes on his Y chromosome to all of his sons and his X chromosome to all of his daughters. Therefore, the sons of a man with an X-linked dominant disorder will not be affected, but all of his daughters will inherit the condition. A woman passes on one or the other of her X chromosomes to each child. Therefore, a woman with an X-linked dominant disorder has a 50 percent chance of having an affected daughter or son with each pregnancy.
• **X-linked recessive inheritance:** Because of the difference in sex chromosomes, the probability of passing on an X-linked recessive disorder (image on page 129) also differs between men and women. The sons of a man with an X-linked recessive disorder will not be affected, and his daughters will carry one copy of the mutated gene. With each pregnancy, a woman who carries an X-linked recessive disorder has a 50 percent chance of having sons who are affected and a 50 percent chance of having daughters who carry one copy of the mutated gene.

• **Y-linked inheritance:** Because only males have a Y chromosome, only males can be affected by and pass on Y-linked disorders (image on page 130). All sons of a man with a Y-linked disorder will inherit the condition from their father.

• **Codominant inheritance:** In codominant inheritance (image on page 131), each parent contributes a different version of a particular gene, and both versions influence the resulting genetic trait. The chance of developing a genetic condition with codominant inheritance, and the characteristic features of that condition, depend on which versions of the gene are passed from parents to their child.

• **Mitochondrial inheritance:** Mitochondria, which are the energy-producing centers inside cells, each contain a small amount of DNA. Disorders with mitochondrial inheritance (image on page 132) result from mutations in mitochondrial DNA. Although these disorders can affect both males and females, only females can pass mutations in mitochondrial DNA to their children. A woman with a disorder caused by changes in mitochondrial DNA will pass the mutation to all of her daughters and sons, but the children of a man with such a disorder will not inherit the mutation.

It is important to note that the chance of passing on a genetic condition applies equally to each pregnancy. For example, if a couple has a child with an autosomal recessive disorder, the chance of having another child with the disorder is still 25 percent (or 1 in 4). Having one child with a disorder does not “protect” future children from inheriting the condition. Conversely, having a child without the condition does not mean that future children will definitely be affected.

Although the chances of inheriting a genetic condition appear straightforward, factors such as a person's family history and the results of genetic testing can sometimes modify those chances. In addition, some people with a disease-causing mutation never develop any health problems or may experience only mild symptoms of the disorder. If a disease that runs in a family does not have a
clear-cut inheritance pattern, predicting the likelihood that a person will develop the condition can be particularly difficult.

Estimating the chance of developing or passing on a genetic disorder can be complex. Genetics professionals can help people understand these chances and help them make informed decisions about their health.

For more information about passing on a genetic disorder in a family:

The National Library of Medicine MedlinePlus website offers information about the chance of developing a genetic disorder on the basis of its inheritance pattern:

- Autosomal dominant (https://medlineplus.gov/ency/article/002049.htm)
- Autosomal recessive (https://medlineplus.gov/ency/article/002052.htm)
- X-linked dominant (https://medlineplus.gov/ency/article/002050.htm)
- X-linked recessive (https://medlineplus.gov/ency/article/002051.htm)

What are reduced penetrance and variable expressivity?

Reduced penetrance and variable expressivity are factors that influence the effects of particular genetic changes. These factors usually affect disorders that have an autosomal dominant pattern of inheritance, although they are occasionally seen in disorders with an autosomal recessive inheritance pattern.

Reduced penetrance

Penetrance refers to the proportion of people with a particular genetic change (such as a mutation in a specific gene) who exhibit signs and symptoms of a genetic disorder. If some people with the mutation do not develop features of the disorder, the condition is said to have reduced (or incomplete) penetrance. Reduced penetrance often occurs with familial cancer syndromes. For example, many people with a mutation in the *BRCA1* or *BRCA2* gene will develop cancer during their lifetime, but some people will not. Doctors cannot predict which people with these mutations will develop cancer or when the tumors will develop.

Reduced penetrance probably results from a combination of genetic, environmental, and lifestyle factors, many of which are unknown. This phenomenon can make it challenging for genetics professionals to interpret a person’s family medical history and predict the risk of passing a genetic condition to future generations.

Variable expressivity

Although some genetic disorders exhibit little variation, most have signs and symptoms that differ among affected individuals. Variable expressivity refers to the range of signs and symptoms that can occur in different people with the same genetic condition. For example, the features of Marfan syndrome vary widely—some people have only mild symptoms (such as being tall and thin with long, slender fingers), while others also experience life-threatening complications involving the heart and blood vessels. Although the features are highly variable, most people with this disorder have a mutation in the same gene (*FBN1*).

As with reduced penetrance, variable expressivity is probably caused by a combination of genetic, environmental, and lifestyle factors, most of which have not been identified. If a genetic condition has highly variable signs and symptoms, it may be challenging to diagnose.
For more information about reduced penetrance and variable expressivity:

What do geneticists mean by anticipation?

The signs and symptoms of some genetic conditions tend to become more severe and appear at an earlier age as the disorder is passed from one generation to the next. This phenomenon is called anticipation. Anticipation is most often seen with certain genetic disorders of the nervous system, such as Huntington disease, myotonic dystrophy, and fragile X syndrome.

Anticipation typically occurs with disorders that are caused by an unusual type of mutation called a trinucleotide repeat expansion. A trinucleotide repeat is a sequence of three DNA building blocks (nucleotides) that is repeated a number of times in a row. DNA segments with an abnormal number of these repeats are unstable and prone to errors during cell division. The number of repeats can change as the gene is passed from parent to child. If the number of repeats increases, it is known as a trinucleotide repeat expansion. In some cases, the trinucleotide repeat may expand until the gene stops functioning normally. This expansion causes the features of some disorders to become more severe with each successive generation.

Most genetic disorders have signs and symptoms that differ among affected individuals, including affected people in the same family. Not all of these differences can be explained by anticipation. A combination of genetic, environmental, and lifestyle factors is probably responsible for the variability, although many of these factors have not been identified. Researchers study multiple generations of affected family members and consider the genetic cause of a disorder before determining that it shows anticipation.

For more information about anticipation:

The Myotonic Dystrophy Foundation describes anticipation in the context of myotonic dystrophy (https://www.myotonic.org/what-dm/disease-mechanism). (Click on the tab that says "Anticipation.")
What are genomic imprinting and uniparental disomy?

Genomic imprinting and uniparental disomy are factors that influence how some genetic conditions are inherited.

Genomic imprinting

People inherit two copies of their genes—one from their mother and one from their father. Usually both copies of each gene are active, or “turned on,” in cells. In some cases, however, only one of the two copies is normally turned on. Which copy is active depends on the parent of origin: some genes are normally active only when they are inherited from a person’s father; others are active only when inherited from a person’s mother. This phenomenon is known as genomic imprinting.

In genes that undergo genomic imprinting, the parent of origin is often marked, or “stamped,” on the gene during the formation of egg and sperm cells. This stamping process, called methylation, is a chemical reaction that attaches small molecules called methyl groups to certain segments of DNA. These molecules identify which copy of a gene was inherited from the mother and which was inherited from the father. The addition and removal of methyl groups can be used to control the activity of genes.

Only a small percentage of all human genes undergo genomic imprinting. Researchers are not yet certain why some genes are imprinted and others are not. They do know that imprinted genes tend to cluster together in the same regions of chromosomes. Two major clusters of imprinted genes have been identified in humans, one on the short (p) arm of chromosome 11 (at position 11p15) and another on the long (q) arm of chromosome 15 (in the region 15q11 to 15q13).

Uniparental disomy

Uniparental disomy (UPD) occurs when a person receives two copies of a chromosome, or part of a chromosome, from one parent and no copies from the other parent. UPD can occur as a random event during the formation of egg or sperm cells or may happen in early fetal development.

In many cases, UPD likely has no effect on health or development. Because most genes are not imprinted, it doesn’t matter if a person inherits both copies from one parent instead of one copy from each parent. In some cases, however, it does make a difference whether a gene is inherited from a person’s mother or father. A person with UPD may lack any active copies of essential genes that undergo genomic imprinting. This loss of gene function can lead to delayed development, intellectual disability, or other health problems.
Several genetic disorders can result from UPD or a disruption of normal genomic imprinting. The most well-known conditions include Prader-Willi syndrome, which is characterized by uncontrolled eating and obesity, and Angelman syndrome, which causes intellectual disability and impaired speech. Both of these disorders can be caused by UPD or other errors in imprinting involving genes on the long arm of chromosome 15. Other conditions, such as Beckwith-Wiedemann syndrome (a disorder characterized by accelerated growth and an increased risk of cancerous tumors), are associated with abnormalities of imprinted genes on the short arm of chromosome 11.

For more information about genomic imprinting and UPD:

The University of Utah offers a basic overview of genomic imprinting (https://learn.genetics.utah.edu/content/epigenetics/imprinting/).

Additional information about epigenetics, including genomic imprinting (https://www.genetics.edu.au/publications-and-resources/facts-sheets/fact-sheet-14-epigenetics) is available from the Centre for Genetics Education.

Geneimprint, a website about genomic imprinting, provides an introduction to imprinting (http://www.geneimprint.com/site/what-is-imprinting) as well as related articles and a list of imprinted genes (http://www.geneimprint.com/site/genes-by-species).

An animated tutorial from the University of Miami illustrates how uniparental disomy occurs (http://hihg.med.miami.edu/code/http/modules/education/Design/animate/uniDisomy.htm).
Are chromosomal disorders inherited?

Although it is possible to inherit some types of chromosomal abnormalities, most chromosomal disorders (such as Down syndrome and Turner syndrome) are not passed from one generation to the next.

Some chromosomal conditions are caused by changes in the number of chromosomes. These changes are not inherited, but occur as random events during the formation of reproductive cells (eggs and sperm). An error in cell division called nondisjunction results in reproductive cells with an abnormal number of chromosomes. For example, a reproductive cell may accidentally gain or lose one copy of a chromosome. If one of these atypical reproductive cells contributes to the genetic makeup of a child, the child will have an extra or missing chromosome in each of the body’s cells.

Changes in chromosome structure can also cause chromosomal disorders. Some changes in chromosome structure can be inherited, while others occur as random accidents during the formation of reproductive cells or in early fetal development. Because the inheritance of these changes can be complex, people concerned about this type of chromosomal abnormality may want to talk with a genetics professional.

Some cancer cells also have changes in the number or structure of their chromosomes. Because these changes occur in somatic cells (cells other than eggs and sperm), they cannot be passed from one generation to the next.

For more information about how chromosomal changes occur:

As part of its fact sheet on chromosome abnormalities, the National Human Genome Research Institute provides a discussion of how chromosome abnormalities happen. (https://www.genome.gov/about-genomics/fact-sheets/Chromosome-Abnormalities-Fact-Sheet)

The March of Dimes discusses the causes of chromosomal abnormalities in their fact sheet Chromosomal Conditions (https://www.marchofdimes.org/baby/chromosomal-conditions.aspx).

Additional information about how chromosomal changes happen (https://www.urmc.rochester.edu/encyclopedia/content.aspx?ContentTypeID=90&ContentID=P02126) is available from the University of Rochester Medical Center.
Why are some genetic conditions more common in particular ethnic groups?

Some genetic disorders are more likely to occur among people who trace their ancestry to a particular geographic area. People in an ethnic group often share certain versions of their genes, which have been passed down from common ancestors. If one of these shared genes contains a disease-causing mutation, a particular genetic disorder may be more frequently seen in the group.

Examples of genetic conditions that are more common in particular ethnic groups are sickle cell disease, which is more common in people of African, African American, or Mediterranean heritage; and Tay-Sachs disease, which is more likely to occur among people of Ashkenazi (eastern and central European) Jewish or French Canadian ancestry. It is important to note, however, that these disorders can occur in any ethnic group.

For more information about genetic disorders that are more common in certain groups:

The Norton & Elaine Sarnoff Center for Jewish Genetics provides information on disorders that occur more frequently in people with Jewish ancestry, including genetic traits that tend to be more common in Ashkenazi Jews (https://www.juf.org/cjg/Ashkenazi-Jewish-Disorders.aspx) and Sephardic Jews (https://www.juf.org/cjg/Sephardic-Jewish-Disorders.aspx).
What is heritability?

Heritability is a measure of how well differences in people’s genes account for differences in their traits. Traits can include characteristics such as height, eye color, and intelligence on page 151, as well as disorders like schizophrenia and autism spectrum disorder. In scientific terms, heritability is a statistical concept (represented as h\(^2\)) that describes how much of the variation in a given trait can be attributed to genetic variation. An estimate of the heritability of a trait is specific to one population in one environment, and it can change over time as circumstances change.

Heritability estimates range from zero to one. A heritability close to zero indicates that almost all of the variability in a trait among people is due to environmental factors, with very little influence from genetic differences. Characteristics such as religion, language spoken, and political preference have a heritability of zero because they are not under genetic control. A heritability close to one indicates that almost all of the variability in a trait comes from genetic differences, with very little contribution from environmental factors. Many disorders that are caused by mutations in single genes, such as phenylketonuria (PKU), have high heritability. Most complex traits in people, such as intelligence and multifactorial diseases on page 57, have a heritability somewhere in the middle, suggesting that their variability is due to a combination of genetic and environmental factors.

Heritability has historically been estimated from studies of twins. Identical twins have almost no differences in their DNA, while fraternal twins share, on average, 50 percent of their DNA. If a trait appears to be more similar in identical twins than in fraternal twins (when they were raised together in the same environment), genetic factors likely play an important role in determining that trait. By comparing a trait in identical twins versus fraternal twins, researchers can calculate an estimate of its heritability.

Heritability can be difficult to understand, so there are many misconceptions about what it can and cannot tell us about a given trait:

- Heritability does not indicate what proportion of a trait is determined by genes and what proportion is determined by environment. So, a heritability of 0.7 does not mean that a trait is 70% caused by genetic factors; it means that 70% of the variability in the trait in a population is due to genetic differences among people.
- Knowing the heritability of a trait does not provide information about which genes or environmental influences are involved, or how important they are in determining the trait.
• Heritable is not the same as familial on page 116. A trait is described as familial if it is shared by members of a family. Traits can appear in families for many reasons in addition to genetics, such as similarities in lifestyle and environment. For example, the language that is spoken tends to be shared in families, but it has no genetic contribution and so is not heritable.

• Heritability does not give any information about how easy or difficult it is to change a trait. For example, hair color is a trait with high heritability, but it is very easy to change with dye.

If heritability provides such limited information, why do researchers study it? Heritability is of particular interest in understanding traits that are very complex with many contributing factors. Heritability can give initial clues as to the relative influences of “nature” (genetics) and “nurture” (environment) on complex traits, and it can give researchers a place to start teasing apart the factors that influence these traits.

Scientific articles for further reading

For more information about heritability:

AP Central from the College Board: Understanding Heritability (https://apcentral.collegeboard.org/courses/ap-psychology/classroom-resources/understanding-heritability)

Genetics and Human Traits

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are fingerprints determined by genetics?</td>
<td>146</td>
</tr>
<tr>
<td>Is eye color determined by genetics?</td>
<td>148</td>
</tr>
<tr>
<td>Is intelligence determined by genetics?</td>
<td>151</td>
</tr>
<tr>
<td>Is handedness determined by genetics?</td>
<td>153</td>
</tr>
<tr>
<td>Is the probability of having twins determined by genetics?</td>
<td>156</td>
</tr>
<tr>
<td>Is hair texture determined by genetics?</td>
<td>159</td>
</tr>
<tr>
<td>Is hair color determined by genetics?</td>
<td>161</td>
</tr>
<tr>
<td>Is height determined by genetics?</td>
<td>164</td>
</tr>
<tr>
<td>Are moles determined by genetics?</td>
<td>166</td>
</tr>
<tr>
<td>Are facial dimples determined by genetics?</td>
<td>168</td>
</tr>
<tr>
<td>Is athletic performance determined by genetics?</td>
<td>169</td>
</tr>
<tr>
<td>Is longevity determined by genetics?</td>
<td>172</td>
</tr>
<tr>
<td>Is temperament determined by genetics?</td>
<td>176</td>
</tr>
</tbody>
</table>
Are fingerprints determined by genetics?

Each person’s fingerprints are unique, which is why they have long been used as a way to identify individuals. Surprisingly little is known about the factors that influence a person’s fingerprint patterns. Like many other complex traits, studies suggest that both genetic and environmental factors play a role.

A person’s fingerprints are based on the patterns of skin ridges (called dermatoglyphs) on the pads of the fingers. These ridges are also present on the toes, the palms of the hands, and the soles of the feet. Although the basic whorl, arch, and loop patterns may be similar, the details of the patterns are specific to each individual.

Dermatoglyphs develop before birth and remain the same throughout life. The ridges begin to develop during the third month of fetal development, and they are fully formed by the sixth month. The function of these ridges is not entirely clear, but they likely increase sensitivity to touch.

The basic size, shape, and spacing of dermatoglyphs appear to be influenced by genetic factors. Studies suggest that multiple genes are involved, so the inheritance pattern is not straightforward. Genes that control the development of the various layers of skin, as well as the muscles, fat, and blood vessels underneath the skin, may all play a role in determining the pattern of ridges. The finer details of the patterns of skin ridges are influenced by other factors during fetal development, including the environment inside the womb. These developmental factors cause each person’s dermatoglyphs to be different from everyone else’s. Even identical twins, who have the same DNA, have different fingerprints.

Few genes involved in dermatoglyph formation have been identified. Rare diseases characterized by abnormal or absent dermatoglyphs provide some clues as to their genetic basis. For example, a condition known as adermatoglyphia is characterized by an absence of dermatoglyphs, sometimes with other abnormalities of the skin. Adermatoglyphia is caused by mutations in a gene called SMARCAD1. Although this gene is clearly important for the formation of dermatoglyphs, its role in their development is unclear.

Scientific journal articles for further reading

To find out more about the influence of genetics on the formation of fingerprints:

The UCSB Science Line from the University of California, Santa Barbara provides information about how fingerprints are formed (http://sciencline.ucsb.edu/getkey.php?key=2650).

The Mad Sci Network offers many Q&As related to fingerprints (http://www.madsci.org/FAQs/body/fingerprints.html), including the genetics and development of dermatoglyphs. The questions were asked by students and answered by scientists.

The Washington State Twin Registry has an FAQ about the fingerprints of identical twins (https://wstwinregistry.org/2015/10/01/do-identical-twins-have-identical-fingerprints/).

OMIM.org provides more detailed genetic information about dermatoglyphs (http://omim.org/entry/125590) and adermatoglyphia (http://omim.org/entry/136000).
Is eye color determined by genetics?

A person’s eye color results from pigmentation of a structure called the iris, which surrounds the small black hole in the center of the eye (the pupil) and helps control how much light can enter the eye. The color of the iris ranges on a continuum from very light blue to dark brown. Most of the time eye color is categorized as blue, green/hazel, or brown. Brown is the most frequent eye color worldwide. Lighter eye colors, such as blue and green, are found almost exclusively among people of European ancestry.

Eye color is determined by variations in a person’s genes. Most of the genes associated with eye color are involved in the production, transport, or storage of a pigment called melanin. Eye color is directly related to the amount and quality of melanin in the front layers of the iris. People with brown eyes have a large amount of melanin in the iris, while people with blue eyes have much less of this pigment.

A particular region on chromosome 15 plays a major role in eye color. Within this region, there are two genes located very close together: OCA2 and HERC2. The protein produced from the OCA2 gene, known as the P protein, is involved in the maturation of melanosomes, which are cellular structures that produce and store melanin. The P protein therefore plays a crucial role in the amount and quality of melanin that is present in the iris. Several common variations (polymorphisms) in the OCA2 gene reduce the amount of functional P protein that is produced. Less P protein means that less melanin is present in the iris, leading to blue eyes instead of brown in people with a polymorphism in this gene.

A region of the nearby HERC2 gene known as intron 86 contains a segment of DNA that controls the activity (expression) of the OCA2 gene, turning it on or off as needed. At least one polymorphism in this area of the HERC2 gene has been shown to reduce the expression of OCA2, which leads to less melanin in the iris and lighter-colored eyes.

Several other genes play smaller roles in determining eye color. Some of these genes are also involved in skin and hair coloring. Genes with reported roles in eye color include ASIP, IRF4, SLC24A4, SLC24A5, SLC45A2, TPCN2, TYR, and TYRP1. The effects of these genes likely combine with those of OCA2 and HERC2 to produce a continuum of eye colors in different people.

Researchers used to think that eye color was determined by a single gene and followed a simple inheritance pattern in which brown eyes were dominant to blue eyes. Under this model, it was believed that parents who both had blue eyes could not have a child with brown eyes. However, later studies showed that this model was too simplistic. Although it is uncommon, parents with blue eyes can
have children with brown eyes. The inheritance of eye color is more complex than originally suspected because multiple genes are involved. While a child’s eye color can often be predicted by the eye colors of his or her parents and other relatives, genetic variations sometimes produce unexpected results.

Several disorders that affect eye color have been described. Ocular albinism is characterized by severely reduced pigmentation of the iris, which causes very light-colored eyes and significant problems with vision. Another condition called oculocutaneous albinism affects the pigmentation of the skin and hair in addition to the eyes. Affected individuals tend to have very light-colored irises, fair skin, and white or light-colored hair. Both ocular albinism and oculocutaneous albinism result from mutations in genes involved in the production and storage of melanin. Another condition called heterochromia is characterized by different-colored eyes in the same individual. Heterochromia can be caused by genetic changes or by a problem during eye development, or it can be acquired as a result of a disease or injury to the eye.

Scientific journal articles for further reading

To learn more about the genetics of eye color:

John H. McDonald at the University of Delaware discusses the myth that eye color is determined by a single gene [here](http://udel.edu/~mcdonald/mytheyecolor.html).

The Tech Museum of Innovation at Stanford University provides a Q&A explaining how brown-eyed parents can have blue-eyed children [here](https://genetics.thetech.org/ask-a-geneticist/brown-eyed-parents-blue-eyed-kids).
More detailed information about ocular albinism (http://omim.org/entry/300500) and oculocutaneous albinism (http://omim.org/entry/203100), as well as the genetics of eye, hair, and skin color variation (http://omim.org/entry/227220), is available from OMIM.org.

A brief description of heterochromia (https://medlineplus.gov/ency/article/003319.htm) is available from MedlinePlus. Additional information about this condition is provided by the Genetic and Rare Diseases Information Center (GARD) (https://rarediseases.info.nih.gov/diseases/8590/heterochromia-iridis) and the American Academy of Ophthalmology (https://www.aao.org/eye-health/diseases/what-is-heterochromia).
Is intelligence determined by genetics?

Like most aspects of human behavior and cognition, intelligence is a complex on page 57 trait that is influenced by both genetic and environmental factors.

Intelligence is challenging to study, in part because it can be defined and measured in different ways. Most definitions of intelligence include the ability to learn from experiences and adapt to changing environments. Elements of intelligence include the ability to reason, plan, solve problems, think abstractly, and understand complex ideas. Many studies rely on a measure of intelligence called the intelligence quotient (IQ).

Researchers have conducted many studies to look for genes that influence intelligence. Many of these studies have focused on similarities and differences in IQ within families, particularly looking at adopted children and twins. These studies suggest that genetic factors underlie about 50 percent of the difference in intelligence among individuals. Other studies have examined variations across the entire genomes of many people (an approach called genome-wide association studies on page 287 or GWAS) to determine whether any specific areas of the genome are associated with IQ. These studies have not conclusively identified any genes that have major roles in differences in intelligence. It is likely that a large number of genes are involved, each of which makes only a small contribution to a person’s intelligence.

Intelligence is also strongly influenced by the environment. Factors related to a child’s home environment and parenting, education and availability of learning resources, and nutrition, among others, all contribute to intelligence. A person’s environment and genes influence each other, and it can be challenging to tease apart the effects of the environment from those of genetics. For example, if a child’s IQ is similar to that of his or her parents, is that similarity due to genetic factors passed down from parent to child, to shared environmental factors, or (most likely) to a combination of both? It is clear that both environmental and genetic factors play a part in determining intelligence.

Scientific journal articles for further reading

To find out more about the influence of genetics on intelligence:

This news release from the journal Nature explains why it is so difficult to identify genes associated with IQ: "'Smart genes' prove elusive" (http://www.nature.com/news/smart-genes-prove-elusive-1.15858) (September 8, 2014)

The Tech Museum of Innovation at Stanford University provides a Q&A about the influence of genes and environment on IQ (https://genetics.thetech.org/ask-a-geneticist/intelligence-and-genetics).

The Cold Spring Harbor Laboratory offers an interactive tool called Genes to Cognition (http://www.g2conline.org/) that provides information about many aspects of the genetics of neuroscience.
Is handedness determined by genetics?

Like most aspects of human behavior, handedness is a complex trait that appears to be influenced by multiple factors, including genetics, environment, and chance.

Handedness, or hand preference, is the tendency to be more skilled and comfortable using one hand instead of the other for tasks such as writing and throwing a ball. Although the percentage varies by culture, in Western countries 85 to 90 percent of people are right-handed and 10 to 15 percent of people are left-handed. Mixed-handedness (preferring different hands for different tasks) and ambidextrousness (the ability to perform tasks equally well with either hand) are uncommon.

Hand preference begins to develop before birth. It becomes increasingly apparent in early childhood and tends to be consistent throughout life. However, little is known about its biological basis. Hand preference probably arises as part of the developmental process that differentiates the right and left sides of the body (called right-left asymmetry). More specifically, handedness appears to be related to differences between the right and left halves (hemispheres) of the brain. The right hemisphere controls movement on the left side of the body, while the left hemisphere controls movement on the right side of the body.

It was initially thought that a single gene controlled handedness. However, more recent studies suggest that multiple genes, perhaps up to 40, contribute to this trait. Each of these genes likely has a weak effect by itself, but together they play a significant role in establishing hand preference. Studies suggest that at least some of these genes help determine the overall right-left asymmetry of the body starting in the earliest stages of development.

So far, researchers have identified only a few of the many genes thought to influence handedness. For example, the PCSK6 gene has been associated with an increased likelihood of being right-handed in people with the psychiatric disorder schizophrenia. Another gene, LRRTM1, has been associated with an increased chance of being left-handed in people with dyslexia (a condition that causes difficulty with reading and spelling). It is unclear whether either of these genes is related to handedness in people without these conditions.

Studies suggest that other factors also contribute to handedness. The prenatal environment and cultural influences may play a role. Additionally, a person’s hand preference may be due partly to random variation among individuals.

Like many complex traits, handedness does not have a simple pattern of inheritance. Children of left-handed parents are more likely to be left-handed than are children of right-handed parents. However, because the overall chance of
being left-handed is relatively low, most children of left-handed parents are right-handed. Identical twins are more likely than non-identical twins (or other siblings) to be either right-handed or left-handed, but many twins have opposite hand preferences.

Scientific journal articles for further reading

To find out more about how handedness is determined:

The Washington State Twin Registry has an FAQ about hand preference in identical twins (https://wstwinregistry.org/2015/10/01/do-identical-twins-always-have-the-same-hand-preference/).
Is the probability of having twins determined by genetics?

The likelihood of conceiving twins is a complex trait. It is probably affected by multiple genetic and environmental factors, depending on the type of twins. The two types of twins are classified as monozygotic and dizygotic.

Monozygotic (MZ) twins, also called identical twins, occur when a single egg cell is fertilized by a single sperm cell. The resulting zygote splits into two very early in development, leading to the formation of two separate embryos. MZ twins occur in 3 to 4 per 1,000 births worldwide. Research suggests that most cases of MZ twinning are not caused by genetic factors. However, a few families with a larger-than-expected number of MZ twins have been reported, which indicates that genetics may play a role. It is possible that genes involved in sticking cells together (cell adhesion) may contribute to MZ twinning, although this hypothesis has not been confirmed. Most of the time, the cause of MZ twinning is unknown.

Dizygotic (DZ) twins, also called fraternal twins, occur when two egg cells are each fertilized by a different sperm cell in the same menstrual cycle. DZ twins are about twice as common as MZ twins, and they are much more likely to run in families. Compared with the general population, women with a mother or sister who have had DZ twins are about twice as likely to have DZ twins themselves.

DZ twinning is thought to be a result of hyperovulation, which is the release of more than one egg in a single menstrual cycle. To explain how DZ twinning can run in families, researchers have looked for genetic factors that increase the chance of hyperovulation. However, studies examining the contributions of specific genes have had mixed and conflicting results. Few specific genes in humans have been definitively linked with hyperovulation or an increased probability of DZ twinning.

Other factors known to influence the chance of having DZ twins include the mother’s age, ethnic background, diet, body composition, and number of other children. Assisted reproductive technologies such as in vitro fertilization (IVF) are also associated with an increased frequency of DZ twins.

Scientific journal articles for further reading

To learn more about the genetics of twinning:

Information about factors influencing MZ and DZ twinning is available from the Washington State Twin Registry:

- Twins run in my family. Do I have an increased chance of having twins? (https://wstwinregistry.org/2015/10/01/twins-run-in-my-family-do-i-have-an-increased-chance-of-having-twins/)
- I am a twin. Do I have an increased chance of having twins? (https://wstwinregistry.org/2015/10/01/i-am-a-twin-do-i-have-an-increased-chance-of-having-twins/)
- Does identical (MZ) twinning run in families? (https://wstwinregistry.org/2015/10/01/does-mz-twinning-run-in-families/)
- What factors are related to fraternal (DZ) twinning? (https://wstwinregistry.org/2015/10/01/what-factors-are-related-to-dz-twinning/)

The Netherlands Twin Register provides an overview of international research on the genetics of DZ and MZ twinning (http://www.tweelingenregister.org/en/research/current-research/searching-for-twinning-genes/).

More detailed information about genetic factors related to MZ twinning (http://www.omim.org/entry/276410) and DZ twinning (http://www.omim.org/entry/276400) is available from OMIM.org.

The International Society for Twin Studies provides a list of twin registries worldwide (http://www.twinstudies.org/information/twinregisters/) and other organizations for twins and their families (http://www.twinstudies.org/information/worldwide-organizations/).
Is hair texture determined by genetics?

Genetic factors appear to play a major role in determining hair texture—straight, wavy, or curly—and the thickness of individual strands of hair. Studies suggest that different genes influence hair texture and thickness in people of different ethnic backgrounds. For example, normal variations (polymorphisms) in two genes, \textit{EDAR} and \textit{FGFR2}, have been associated with differences in hair thickness in Asian populations. A polymorphism in another gene, \textit{TCHH}, appears to be related to differences in hair texture in people of northern European ancestry. It is likely that many additional genes contribute to hair texture and thickness in various populations.

Several genetic syndromes are characterized by unusual hair texture. These syndromes are caused by mutations in genes that play roles in hair structure and stability, including genes associated with desmosomes (specialized cell structures that hold hair cells together), keratins (proteins that provide strength and resilience to hair strands), and chemical signaling pathways involving a molecule called lysophosphatidic acid (LPA), which promotes hair growth.

Genetic syndromes that feature altered hair texture include:

- Autosomal recessive hypotrichosis (caused by mutations in the \textit{DSG4}, \textit{LIPH}, or \textit{LPAR6} gene)
- Keratoderma with woolly hair (caused by mutations in the \textit{JUP}, \textit{DSP}, \textit{DSC2}, or \textit{KANK2} gene)
- Monilethrix (caused by mutations in the \textit{DSG4}, \textit{KRT81}, \textit{KRT83}, or \textit{KRT86} gene)
- Uncombable hair syndrome (caused by mutations in the \textit{PADI3}, \textit{TCHH}, or \textit{TGM3} gene)

Researchers speculate that the genes associated with these disorders probably also contribute to normal variations in hair texture and thickness, although little is known about the roles these genes play in normal hair.

Factors other than genetics can also influence hair texture and thickness. Hormones, certain medications, and chemicals such as hair relaxers can alter the characteristics of a person’s hair. Hair texture and thickness can also change with age.

Scientific journal articles for further reading

To find out more about the influence of genetics on hair texture:

The Tech Museum of Innovation at Stanford University provides a Q&A on the differences in hair texture among ethnic groups (https://genetics.thetech.org/ask/ask107) and another on the inheritance of hair texture (https://genetics.thetech.org/ask/ask368).

More detailed information about the genetics of hair thickness (http://omim.org/entry/612630) and hair texture (http://omim.org/entry/139450) is available from OMIM.org.
Is hair color determined by genetics?

Hair color is determined by the amount of a pigment called melanin in hair. An abundance of one type of melanin, called eumelanin, gives people black or brown hair. An abundance of another pigment, called pheomelanin, gives people red hair.

<table>
<thead>
<tr>
<th>Hair color</th>
<th>Type and amount of melanin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>Large amount of eumelanin</td>
</tr>
<tr>
<td>Brown</td>
<td>Moderate amount of eumelanin</td>
</tr>
<tr>
<td>Blond</td>
<td>Very little eumelanin</td>
</tr>
<tr>
<td>Red</td>
<td>Mostly pheomelanin with a little eumelanin</td>
</tr>
</tbody>
</table>

The type and amount of melanin in hair is determined by many genes, although little is known about most of them. The best-studied hair-color gene in humans is called \(MC1R\). This gene provides instructions for making a protein called the melanocortin 1 receptor, which is involved in the pathway that produces melanin. The melanocortin 1 receptor controls which type of melanin is produced by melanocytes. When the receptor is turned on (activated), it triggers a series of chemical reactions inside melanocytes that stimulate these cells to make eumelanin. If the receptor is not activated or is blocked, melanocytes make pheomelanin instead of eumelanin. Many other genes also help to regulate this process. Most people have two functioning copies of the \(MC1R\) gene, one inherited from each parent. These individuals have black or brown hair, because of the high amount of eumelanin. It is estimated that more than 90 percent of people in the world have brown or black hair.

Some people have variations in one copy of the \(MC1R\) gene in each cell that causes the gene to be turned off (deactivated). This type of genetic change is described as loss-of-function. For these individuals, eumelanin production is lower, while pheomelanin production is higher, so they have strawberry blond, auburn, or red hair. In an even smaller percentage of people, both copies of the \(MC1R\) gene in each cell have loss-of-function changes, and the melanin-production pathway produces only the pheomelanin pigment. The hair of these individuals is almost always very red. Even when the melanin-production pathway is making eumelanin, changes in other genes can reduce the amount of eumelanin produced. These changes lead to blond hair.

Hair color ranges across a wide spectrum of hues, from flaxen blond to coal black. Many genes other than \(MC1R\) play a role in determining shades of hair color by controlling levels of eumelanin and pheomelanin. Some of these genes,
including ASIP, DTNBP1, GPR143, HPS3, KITLG, MLPH, MYO5A, MYO7A, OCA2, SLC45A2, SLC24A5, TYRP1, TYR, ERCC6, GNAS, HERC2, IRF4, OBSCN, SLC24A4, TPCN2, and MITF, are involved in the production of melanin in hair. Some of these genes are associated with gene transcription (which is the first step in protein production), DNA repair, the transport of substances (such as calcium) across cell membranes, or the structure of hair follicles. Several of these genes contribute to eye and skin color, but the exact role they play in determining hair color is unknown.

Hair color may change over time. Particularly in people of European descent, light hair color may darken as individuals grow older. For example, blond-haired children often have darker hair by the time they are teenagers. Researchers speculate that certain hair-pigment proteins are activated as children grow older, perhaps in response to hormonal changes that occur near puberty. Almost everyone’s hair will begin to turn gray as they age, although when it happens and to what extent is variable. Gray hair is partly hereditary and may vary by ethnic origin; it is also somewhat dependent on external factors such as stress. Hair becomes gray when the hair follicle loses its ability to make melanin, but exactly why that occurs is not clear.

Scientific journal articles for further reading

To find out more about the influence of genetics on hair color:

The Tech Museum of Innovation at Stanford University provides a Q&A page about hair color (https://genetics.thetech.org/genetic-categories/hair-color).

Science journal explains the genetics of blond hair (https://www.sciencemag.org/news/2014/06/genetics-blond-hair).

Is height determined by genetics?

Scientists estimate that about 80 percent of an individual’s height is determined by the DNA sequence variants they have inherited, but which genes these variants are in and what they do to affect height are only partially understood. Some rare gene mutations have dramatic effects on height (for example, variants in the \textit{FGFR3} gene cause achondroplasia, a rare condition characterized by short stature). For most individuals, though, height is controlled largely by a combination of genetic variants that each have more modest effects on height, plus a smaller contribution from environmental factors (such as nutrition). More than 700 such gene variants have been discovered and many more are expected to be identified. Some of these variants are in genes that directly or indirectly affect cartilage in growth plates, which are areas in the long bones of the legs and arms where new bone is produced, lengthening the bones as children grow. The function of many other height-associated genes remains unknown.

In addition to the \textit{FGFR3} gene, researchers have identified hundreds of other genes involved in rare disorders that have an extreme effect on height. These genes (and the conditions they are associated with) include \textit{FBN1} (acromicric dysplasia, geleophysic dysplasia, Marfan syndrome), \textit{GH1} (isolated growth hormone deficiency), \textit{EVC} (Ellis-van Creveld syndrome, Weyers acrofacial dysostosis), and \textit{GPC3} (Simpson-Golabi-Behmel syndrome). By studying the dramatic effect that altered versions of these genes have on height, scientists hope to better understand the complex interactions among genes that contribute to normal height. Some genes, such as \textit{ACAN}, contain rare variants that cause severe growth disorders, and also other variants with milder effects on height in individuals without a related health condition. Identifying other height genes, and variants with large or small effects, is an active area of genetic research.

Because height is determined by multiple gene variants (an inheritance pattern called polygenic inheritance), it is difficult to accurately predict how tall a child will be. The inheritance of these variants from one’s parents helps explain why children usually grow to be approximately as tall as their parents, but different combinations of variants can cause siblings to be of different heights. Height is influenced by other biological mechanisms (such as hormones) that may also be determined by genetics, although the roles of these mechanisms are not fully understood.

In addition to genetic and biological determinants, height is also influenced by environmental factors, including the nutritional status of the mother during pregnancy, whether she smoked, and her exposure to hazardous substances. A well-nourished, healthy, and active child is likely to be taller as an adult than will be a child with a poor diet, infectious diseases, or inadequate health...
care. Socioeconomic factors such as income, education, and occupation can also influence height. In some cases, ethnicity plays a role in adult height, but studies on immigrant families have shown that moving to a country with better access to nutritious food, healthcare, and employment opportunities can have a substantial influence on the height of the next generation; this suggests that some differences in height between ethnicities are explained by non-genetic factors.

Scientific journal articles for further reading

To learn more about the genetics of height:

The Broad Institute of the Massachusetts Institute of Technology and Harvard University published a press release about the Genetic Investigation of Anthropometric Traits (GIANT) study (https://www.broadinstitute.org/news/giant-study-reveals-giant-number-genes-linked-height), which greatly expanded understanding of the role of genetics in height determination.

OMIM.org provides a list of genes that are associated with height (https://www.omim.org/search/?index=geneMap&search=stature+height+shortness+tallness&start=1&limit=10).
Are moles determined by genetics?

Moles are very common, especially in people with fair skin. Moles are overgrowths of skin cells called melanocytes, but the genetic factors involved in their development are not well understood. Although moles, like tumors, are an overgrowth of cells, moles are almost always noncancerous (benign). Perhaps because most moles are benign, scientists have not studied them extensively, and not much is known about their genetics. Similar numbers of moles seem to occur on individuals of different generations of a family, so a tendency to develop moles seems to be inherited, but the inheritance pattern is not well understood.

Most moles occur on parts of the body that are exposed to the sun (ultraviolet radiation), and the number of moles an individual has may increase after extended time in the sun. Moles usually begin to occur in childhood. These moles are called acquired melanocytic nevi (and include the subtype epidermal nevus). It is common for new moles to appear during times when hormone levels change, such as adolescence and pregnancy. During an individual’s lifetime, moles may change in appearance; hair may grow out of them, and they can change in size and shape, darken, fade, or disappear. Infants and the elderly tend to have the fewest moles.

Sometimes, moles are present at birth or develop during infancy. These moles, which are called congenital nevi, are almost always benign. Rarely, a very large mole, called a giant congenital melanocytic nevus, is present at birth. In rare cases, the most serious type of skin cancer (called melanoma) may develop in this type of mole.

Large, irregularly shaped and colored moles called dysplastic nevi or atypical moles can occur at any age. Although not common, they tend to be numerous, and they increase a person’s risk of melanoma. Heredity contributes to the development of dysplastic nevi and to having a higher-than-average number of benign moles. Spending a lot of time in the sun can also increase the number of moles a person has. However, moles are often found on areas of the body that are not exposed, which suggests that factors other than ultraviolet radiation from the sun, perhaps hormones or other biologic processes, are involved in triggering the development of acquired melanocytic nevi and dysplastic nevi.

Although the genetics of melanoma has been widely studied, much less is known about genes involved in the development of benign moles. Variations in several genes, including FGFR3, PIK3CA, HRAS, and BRAF, are involved with benign moles. The most-studied of these is the BRAF gene. A mutation in BRAF leads to the production of an altered protein that causes melanocytes to aggregate into moles. This altered protein also triggers the production of a tumor-suppressor protein called p15 that stops moles from growing too big. In rare cases, BRAF
mutations together with deletion of the CDKN2A gene causes a lack of p15, which creates the potential for mole cells to grow uncontrollably and become cancerous (malignant). The formation of cancer is increasingly likely when combined with environmental factors, such as cell damage caused by ultraviolet radiation exposure.

In susceptible individuals (those with fair skin, light hair, skin that burns instead of tans, a family history of melanoma, and genetic risk factors such as deletion of or mutations in the CDKN2A gene), ultraviolet radiation from repeated sun exposure can damage existing moles, increasing their risk of becoming malignant. Research has shown that individuals who have an abundance of moles are at an increased risk of melanoma. However, some people who are diagnosed with melanoma have few moles, and melanoma often develops in areas of the body that are not exposed to the sun. Researchers are working to identify additional susceptibility genes to better understand the genetics of moles and their relationship with cancer.

Scientific journal articles for further reading

To learn more about the genetics of moles:

MedlinePlus offers a list of resources (https://medlineplus.gov/moles.html#cat_51) to learn more about moles.

Are facial dimples determined by genetics?

Dimples—indentations on the cheeks—tend to occur in families, and this trait is assumed to be inherited. Dimples are usually considered a dominant genetic trait, which means that one copy of the altered gene in each cell is sufficient to cause dimples. However, some researchers say that there is no proof that dimples are inherited. Little research has been done to explore the genetics of dimples and it is not known which gene or genes may be involved.

A dimple is an anomaly of the muscle that causes a dent in the cheek, especially when the individual smiles. Some people have dimples in both cheeks, others in just one cheek. Babies are likely to have dimples caused by baby fat in their cheeks. When they lose their baby fat as they get older, their dimples disappear. Other children do not have them at birth, but may develop them later in childhood. In some people, dimples last only until adolescence or young adulthood, while in others they are a lifetime trait.

Dimples that have a similar appearance can occur in successive generations of a family. For example, in one family, it was observed that the siblings, their father, uncles, grandfather, and great-grandfather all had similar-looking dimples in both cheeks. In other families, dimples may occur in a child but are not seen in more than one generation.

Scientific articles for further reading

OMIM: Dimples, Facial (126100) (https://www.omim.org/entry/126100)

To find out more about the influence of genetics on dimples:

Stanford at the Tech: Genetics of Dimples (https://genetics.thetech.org/ask/ask47)

Genetic Science Learning Center at the University of Utah: Observable Human Characteristics (https://learn.genetics.utah.edu/content/basics/observable/)
Is athletic performance determined by genetics?

Athletic performance is a complex trait that is influenced by both genetic and environmental factors. Many physical traits help determine an individual's athletic ability, primarily the strength of muscles used for movement (skeletal muscles) and the predominant type of fibers that compose them. Skeletal muscles are made up of two types of muscle fibers: slow-twitch fibers and fast-twitch fibers. Slow-twitch muscle fibers contract slowly but can work for a long time without tiring; these fibers enable endurance activities like long-distance running. Fast-twitch muscle fibers contract quickly but tire rapidly; these fibers are good for sprinting and other activities that require power or strength. Other traits related to athleticism include the maximum amount of oxygen the body can deliver to its tissues (aerobic capacity), muscle mass, height, flexibility, coordination, intellectual ability, and personality.

Studies focused on similarities and differences in athletic performance within families, including between twins, suggest that genetic factors underlie 30 to 80 percent of the differences among individuals in traits related to athletic performance. Many studies have investigated variations in specific genes thought to be involved in these traits, comparing athletes with nonathletes.

The best-studied genes associated with athletic performance are \textit{ACTN3} and \textit{ACE}. These genes influence the fiber type that makes up muscles, and they have been linked to strength and endurance. The \textit{ACTN3} gene provides instructions for making a protein called alpha (#)-actinin-3, which is predominantly found in fast-twitch muscle fibers. A variant in this gene, called R577X, leads to production of an abnormally short #-actinin-3 protein that is quickly broken down. Some people have this variant in both copies of the gene; this genetic pattern (genotype) is referred to as 577XX. These individuals have a complete absence of #-actinin-3, which appears to reduce the proportion of fast-twitch muscle fibers and increase the proportion of slow-twitch fibers in the body. Some studies have found that the 577XX genotype is more common among high-performing endurance athletes (for example, cyclists and long-distance runners) than in the general population, while other studies have not supported these findings. The 577RR genotype is associated with a high proportion of fast-twitch fibers and is seen more commonly in athletes who rely on strength or speed, such as short-distance runners.

The \textit{ACE} gene provides instructions for making a protein called angiotensin-converting enzyme, which converts a hormone called angiotensin I to another form called angiotensin II. Angiotensin II helps control blood pressure and may also influence skeletal muscle function, although this role is not completely understood. A variation in the \textit{ACE} gene, called the \textit{ACE} I/D polymorphism,
alters activity of the gene. Individuals can have two copies of a version called the D allele, which is known as the DD pattern, two copies of a version called the I allele, known as the II pattern, or one copy of each version, called the ID pattern. Of the three patterns, DD is associated with the highest levels of angiotensin-converting enzyme. The DD pattern is thought to be related to a higher proportion of fast-twitch muscle fibers and greater speed.

Many other genes with diverse functions have been associated with athletic performance. Some are involved in the function of skeletal muscles, while others play roles in the production of energy for cells, communication between nerve cells, or other cellular processes.

Other studies have examined variations across the entire genomes (an approach called genome-wide association studies or GWAS) of elite athletes to determine whether specific areas of the genome are associated with athleticism. More than 150 different variations linked to athletic performance have been identified in these studies; however, most have been found in only one or a few studies, and the significance of most of these genetic changes have not been identified. It is likely that a large number of genes are involved, each of which makes only a small contribution to athletic performance.

Athletic performance is also strongly influenced by the environment. Factors such as the amount of support a person receives from family and coaches, economic and other circumstances that allow one to pursue the activity, availability of resources, and a person’s relative age compared to their peers all seem to play a role in athletic excellence. A person’s environment and genes influence each other, so it can be challenging to tease apart the effects of the environment from those of genetics. For example, if a child and his or her parent excel at a sport, is that similarity due to genetic factors passed down from parent to child, to similar environmental factors, or (most likely) to a combination of the two? It is clear that both environmental and genetic factors play a part in determining athletic ability.

Scientific journal articles for further reading

To learn more about the genetics of athletic performance:

A story from the Genetic Literacy Project (https://geneticliteracyproject.org/2015/01/08/can-we-yet-use-genetics-to-determine-which-sports-are-best-for-our-kids/) explores the interplay between biologic and environmental factors that influence athletic ability.

The Personal Genetics Education Project discusses the role genetic testing may play in sports (https://pged.org/athletics-genetics/).
Is longevity determined by genetics?

The duration of human life (longevity) is influenced by genetics, the environment, and lifestyle. Environmental improvements beginning in the 1900s extended the average life span dramatically with significant improvements in the availability of food and clean water, better housing and living conditions, reduced exposure to infectious diseases, and access to medical care. Most significant were public health advances that reduced premature death by decreasing the risk of infant mortality, increasing the chances of surviving childhood, and avoiding infection and communicable disease. Now people in the United States live about 80 years on average, but some individuals survive for much longer.

Scientists are studying people in their nineties (called nonagenarians) and hundreds (called centenarians, including semi-supercentenarians of ages 105-109 years and supercentenarians, ages 110+) to determine what contributes to their long lives. They have found that long-lived individuals have little in common with one another in education, income, or profession. The similarities they do share, however, reflect their lifestyles—many are nonsmokers, are not obese, and cope well with stress. Also, most are women. Because of their healthy habits, these older adults are less likely to develop age-related chronic diseases, such as high blood pressure, heart disease, cancer, and diabetes, than their same-age peers.

The siblings and children (collectively called first-degree relatives) of long-lived individuals are more likely to remain healthy longer and to live to an older age than their peers. People with centenarian parents are less likely at age 70 to have the age-related diseases that are common among older adults. The brothers and sisters of centenarians typically have long lives, and if they develop age-related diseases (such as high blood pressure, heart disease, cancer, or type 2 diabetes), these diseases appear later than they do in the general population. Longer life spans tend to run in families, which suggests that shared genetics, lifestyle, or both play an important role in determining longevity.

The study of longevity genes is a developing science. It is estimated that about 25 percent of the variation in human life span is determined by genetics, but which genes, and how they contribute to longevity, are not well understood. A few of the common variations (called polymorphisms) associated with long life spans are found in the APOE, FOXO3, and CETP genes, but they are not found in all individuals with exceptional longevity. It is likely that variants in multiple genes, some of which are unidentified, act together to contribute to a long life.

Whole genome sequencing on page 214 studies of supercentenarians have identified the same gene variants that increase disease risk in people who have average life spans. The supercentenarians, however, also have
many other newly identified gene variants that possibly promote longevity. Scientists speculate that for the first seven or eight decades, lifestyle is a stronger determinant of health and life span than genetics. Eating well, not drinking too much alcohol, avoiding tobacco, and staying physically active enable some individuals to attain a healthy old age; genetics then appears to play a progressively important role in keeping individuals healthy as they age into their eighties and beyond. Many nonagenarians and centenarians are able to live independently and avoid age-related diseases until the very last years of their lives.

Some of the gene variants that contribute to a long life are involved with the basic maintenance and function of the body’s cells. These cellular functions include DNA repair, maintenance of the ends of chromosomes (regions called telomeres), and protection of cells from damage caused by unstable oxygen-containing molecules (free radicals). Other genes that are associated with blood fat (lipid) levels, inflammation, and the cardiovascular and immune systems contribute significantly to longevity because they reduce the risk of heart disease (the main cause of death in older people), stroke, and insulin resistance.

In addition to studying the very old in the United States, scientists are also studying a handful of communities in other parts of the world where people often live into their nineties and older—Okinawa (Japan), Ikaria (Greece), and Sardinia (Italy). These three regions are similar in that they are relatively isolated from the broader population in their countries, are lower income, have little industrialization, and tend to follow a traditional (non-Western) lifestyle. Unlike other populations of the very old, the centenarians on Sardinia include a significant proportion of men. Researchers are studying whether hormones, sex-specific genes, or other factors may contribute to longer lives among men as well as women on this island.

Scientific journal articles for further reading

Genetics and Human Traits

To learn more about the genetics of longevity:

Boston University School of Medicine provides a description of the New England Centenarian Study (http://www.bumc.bu.edu/centenarian/).

The Institute for Aging Research at Albert Einstein College of Medicine describes the Longevity Genes Project (https://www.einstein.yu.edu/centers/aging/longevity-genes-project/).

The SardiNIA Project has several pages describing research investigating longevity genes (https://sardinia.irp.nia.nih.gov/index.html) among Italians living on the Mediterranean island of Sardinia.

Human Ageing Genomic Resources (http://genomics.senescence.info/about.html) offers an overview of the biology and genetics of aging (http://senescence.info/).
The Okinawa Centenarian Study (http://orcls.org/index.php) describes the genetics, healthy aging, and longevity of Japanese living on the island of Okinawa.
Is temperament determined by genetics?
Temperament includes behavioral traits such as sociability (outgoing or shy), emotionality (easy-going or quick to react), activity level (high or low energy), attention level (focused or easily distracted), and persistence (determined or easily discouraged). These examples represent a spectrum of common characteristics, each of which may be advantageous in certain circumstances. Temperament remains fairly consistent, particularly throughout adulthood.

Similar temperaments within a family may be attributable to shared genetics and to the environment in which an individual is raised. Studies of identical twins (who share 100 percent of their DNA) and their non-twin siblings (who share about 50 percent of their DNA) show that genetics play a large role. Identical twins typically have very similar temperaments when compared with their other siblings. Even identical twins who were raised apart from one another in separate households share such traits.

Scientists estimate that 20 to 60 percent of temperament is determined by genetics. Temperament, however, does not have a clear pattern of inheritance and there are not specific genes that confer specific temperamental traits. Instead, many (perhaps thousands) of common gene variations (polymorphisms) combine to influence individual characteristics of temperament. Other DNA modifications that do not alter DNA sequences (epigenetic changes on page 77) also likely contribute to temperament.

Large studies have identified several genes that play a role in temperament. Many of these genes are involved in communication between cells in the brain. Certain gene variations may contribute to particular traits related to temperament. For example, variants in the \textit{DRD2} and \textit{DRD4} genes have been linked to a desire to seek out new experiences, and \textit{KATNAL2} gene variants are associated with self-discipline and carefulness. Variants affecting the \textit{PCDH15} and \textit{WSCD2} genes are associated with sociability, while some \textit{MAOA} gene variants may be linked to introversion, particularly in certain environments. Variants in several genes, such as \textit{SLC6A4}, \textit{AGBL2}, \textit{BAIAP2}, \textit{CELFL4}, \textit{L3MBTL2}, \textit{LINGO2}, \textit{XKR6}, \textit{ZC3H7B}, \textit{OLF4M4}, \textit{MEF2C}, and \textit{TMEM161B} contribute to anxiousness or depression.

Environmental factors also play a role in temperament by influencing gene activity. In children raised in an adverse environment (such as one of child abuse and violence), genes that increase the risk of impulsive temperamental characteristics may be turned on (activated). However, a child who grows up in a positive environment (for example a safe and loving home) may have a calmer temperament, in part because a different set of genes is activated.
Scientific journal articles for further reading

To find out more about the role of genetics in temperament:

Genetic Consultation

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is a genetic consultation?</td>
<td>179</td>
</tr>
<tr>
<td>Why might someone have a genetic consultation?</td>
<td>180</td>
</tr>
<tr>
<td>What happens during a genetic consultation?</td>
<td>181</td>
</tr>
<tr>
<td>How can I find a genetics professional in my area?</td>
<td>183</td>
</tr>
<tr>
<td>What is the prognosis of a genetic condition?</td>
<td>185</td>
</tr>
<tr>
<td>How are genetic conditions diagnosed?</td>
<td>187</td>
</tr>
<tr>
<td>How are genetic conditions treated or managed?</td>
<td>190</td>
</tr>
</tbody>
</table>
What is a genetic consultation?

A genetic consultation is a health service that provides information and support to people who have, or may be at risk for, genetic disorders. During a consultation, a genetics professional meets with an individual or family to discuss genetic risks or to diagnose, confirm, or rule out a genetic condition.

Genetics professionals include medical geneticists (doctors who specialize in genetics) and genetic counselors (certified healthcare workers with experience in medical genetics and counseling). Other healthcare professionals such as nurses, psychologists, and social workers trained in genetics can also provide genetic consultations.

Consultations usually take place in a doctor’s office, hospital, genetics center, or other type of medical center. These meetings are most often in-person visits with individuals or families, but they are occasionally conducted in a group or over the telephone.

For more information about genetic consultations:

MedlinePlus offers a list of links to information about genetic counseling (https://medlineplus.gov/geneticcounseling.html).

Additional background information is provided by the National Human Genome Research Institute in its Frequently Asked Questions About Genetic Counseling (https://www.genome.gov/FAQ/Genetic-Counseling).

Information about genetic counseling, including the different types of counseling, is available from the National Center for Biotechnology Information (NCBI) in the booklet Making Sense of Your Genes: A Guide to Genetic Counseling (https://www.ncbi.nlm.nih.gov/books/NBK115508/).

An introduction to genetic counseling (http://aboutgeneticcounselors.com/Genetic-Counseling) is provided by the National Society of Genetic Counselors.

Why might someone have a genetic consultation?

Individuals or families who are concerned about an inherited condition may benefit from a genetic consultation. The reasons that a person might be referred to a genetic counselor, medical geneticist, or other genetics professional include:

- A personal or family history of a genetic condition, birth defect, chromosomal disorder, or hereditary cancer.
- Two or more pregnancy losses (miscarriages), a stillbirth, or a baby who died.
- A child with a known inherited disorder, a birth defect, intellectual disability, or developmental delay.
- A woman who is pregnant or plans to become pregnant at or after age 35. (Some chromosomal disorders occur more frequently in children born to older women.)
- Abnormal test results that suggest a genetic or chromosomal condition.
- An increased risk of developing or passing on a particular genetic disorder on the basis of a person’s ethnic background.
- People related by blood (for example, cousins) who plan to have children together. (A child whose parents are related may be at an increased risk of inheriting certain genetic disorders.)

A genetic consultation is also an important part of the decision-making process for genetic testing. A visit with a genetics professional may be helpful even if testing is not available for a specific condition, however.

For more information about the reasons for having a genetic consultation:

What happens during a genetic consultation?

A genetic consultation provides information, offers support, and addresses a patient’s specific questions and concerns. To help determine whether a condition has a genetic component, a genetics professional asks about a person’s medical history and takes a detailed family history (a record of health information about a person's immediate and extended family). The genetics professional may also perform a physical examination and recommend appropriate tests.

If a person is diagnosed with a genetic condition, the genetics professional provides information about the diagnosis, how the condition is inherited, the chance of passing the condition to future generations, and the options for testing and treatment.

During a consultation, a genetics professional will:

- Interpret and communicate complex medical information.
- Help each person make informed, independent decisions about their health care and reproductive options.
- Respect each person’s individual beliefs, traditions, and feelings.

A genetics professional will NOT:

- Tell a person which decision to make.
- Advise a couple not to have children.
- Recommend that a woman continue or end a pregnancy.
- Tell someone whether to undergo testing for a genetic disorder.

For more information about what to expect during a genetic consultation:

EuroGentest explains what a person can expect during a visit with a genetic specialist (http://www.eurogentest.org/index.php?id=620) and offers frequently asked questions that may be helpful during an appointment (http://www.eurogentest.org/index.php?id=615).

The Illinois Department of Public Health discusses genetic counseling services and provides a list of questions to ask a genetic counselor (http://www.idph.state.il.us/HealthWellness/gencounselor.htm).
How can I find a genetics professional in my area?

To find a genetics professional in your community, you may wish to ask your doctor for a referral. If you have health insurance, you can also contact your insurance company to find a medical geneticist or genetic counselor in your area who participates in your plan.

Several organizations have tips for finding a healthcare professional:

- The Genetic and Rare Diseases Information Center, a service of the National Institutes of Health, provides a guide to finding specialists (https://rarediseases.info.nih.gov/guides/pages/25/how-to-find-a-disease-specialist) in particular genetic and rare conditions.

- The Tuberous Sclerosis Alliance provides advice on finding and choosing a doctor (https://www.tsalliance.org/individuals-families/adults/how-to-find-a-doctor-a-guide-for-adults-with-tsc/). Although this advice is written for adults with tuberous sclerosis, much of it applies to people with any chronic health condition.

Additional resources for locating a genetics professional in your community are available online:

- The National Society of Genetic Counselors (NSGC) offers a searchable directory of genetic counselors in the United States and Canada (https://www.findageneticcounselor.com/). You can search by location, name, area of practice/specialization, and/or ZIP Code.

- The American Board of Genetic Counseling (ABGC) provides a searchable directory of certified genetic counselors worldwide (https://www.abgc.net/about-genetic-counseling/find-a-certified-counselor.aspx/). You can search by practice area, name, organization, or location.

- The Canadian Association of Genetic Counsellors (CAGC) has a searchable directory of genetic counselors in Canada (https://www.cagc-accg.ca/index.php?page=225). You can search by name, distance from an address, province, or services.
• The American College of Medical Genetics and Genomics (ACMG) has a searchable database of medical genetics clinic services (https://www.acmg.net/ACMG/Genetic_Services_Directory_Search.aspx) in the United States.

• The National Cancer Institute provides a Cancer Genetics Services Directory (https://www.cancer.gov/about-cancer/causes-prevention/genetics/directory), which lists professionals who provide services related to cancer genetics. You can search by type of cancer or syndrome, location, and/or provider name.

If you have a health condition that has not been diagnosed, you may be interested in the Undiagnosed Diseases Network (https://undiagnosed.hms.harvard.edu/). They have information about how to apply (https://undiagnosed.hms.harvard.edu/apply/) for this multicenter research study.
What is the prognosis of a genetic condition?

The prognosis of a genetic condition includes its likely course, duration, and outcome. When health professionals refer to the prognosis of a disease, they may also mean the chance of recovery; however, most genetic conditions are life-long and are managed rather than cured.

Disease prognosis has multiple aspects, including:

- How long a person with the disorder is likely to live (life expectancy)
- Whether the signs and symptoms worsen (and how quickly) or are stable over time
- Quality of life, such as independence in daily activities
- Potential for complications and associated health issues

The prognosis of a genetic condition depends on many factors, including the specific diagnosis and an individual's particular signs and symptoms. Sometimes the associated genetic change, if known, can also give clues to the prognosis. Additionally, the course and outcome of a condition depends on the availability and effectiveness of treatment and management approaches. The prognosis of very rare diseases can be difficult to predict because so few affected individuals have been identified. Prognosis may also be difficult or impossible to establish if a person's diagnosis is unknown.

The prognoses of genetic disorders vary widely, often even among people with the same condition. Some genetic disorders cause physical and developmental problems that are so severe they are incompatible with life. These conditions may cause a miscarriage of an affected embryo or fetus, or an affected infant may be stillborn or die shortly after birth. People with less severe genetic conditions may live into childhood or adulthood but have a shortened lifespan due to health problems related to their disorder. Genetic conditions with a milder course may be associated with a normal lifespan and few related health issues.

The prognosis of a disease is based on probability, which means that it is likely but not certain that the disorder will follow a particular course. Your healthcare provider is the best resource for information about the prognosis of your specific genetic condition. He or she can assess your medical history and signs and symptoms to give you the most accurate estimate of your prognosis.

Learn more about the prognosis of genetic conditions:

This list of resources can help you locate a genetics professional in your area.
The A.D.A.M. Medical Encyclopedia (https://medlineplus.gov/encyclopedia.html) on MedlinePlus offers brief descriptions about many health problems, including some genetic conditions. Each page includes a section on Outlook (prognosis).

A discussion of the prognosis of disorders with a neurological basis (https://www.ninds.nih.gov/Disorders/All-Disorders) is available from the National Institute of Neurological Disorders and Stroke (NINDS).

Local and national support and advocacy groups are also excellent resources for information about specific genetic conditions, including disease prognosis. Each condition summary (https://ghr.nlm.nih.gov/condition) on Genetics Home Reference provides links to support and advocacy resources under the heading "Patient Support." Additionally, patient support resources related to specific genetic conditions can be identified through the Genetic Alliance's Disease InfoSearch (https://www.diseaseinfosearch.org/).
How are genetic conditions diagnosed?

A doctor may suspect a diagnosis of a genetic condition on the basis of a person's physical characteristics and family history, or on the results of a screening test.

Genetic testing is one of several tools that doctors use to diagnose genetic conditions. The approaches to making a genetic diagnosis include:

- A physical examination: Certain physical characteristics, such as distinctive facial features, can suggest the diagnosis of a genetic disorder. A geneticist will do a thorough physical examination that may include measurements such as the distance around the head (head circumference), the distance between the eyes, and the length of the arms and legs. Depending on the situation, specialized examinations such as nervous system (neurological) or eye (ophthalmologic) exams may be performed. The doctor may also use imaging studies including x-rays, computerized tomography (CT) scans, or magnetic resonance imaging (MRI) to see structures inside the body.

- Personal medical history: Information about an individual's health, often going back to birth, can provide clues to a genetic diagnosis. A personal medical history includes past health issues, hospitalizations and surgeries, allergies, medications, and the results of any medical or genetic testing that has already been done.

- Family medical history: Because genetic conditions often run in families, information about the health of family members can be a critical tool for diagnosing these disorders. A doctor or genetic counselor will ask about health conditions in an individual's parents, siblings, children, and possibly more distant relatives. This information can give clues about the diagnosis and inheritance pattern of a genetic condition in a family.

- Laboratory tests, including genetic testing: Molecular, chromosomal, and biochemical genetic testing are used to diagnose genetic disorders. Other laboratory tests that measure the levels of certain substances in blood and urine can also help suggest a diagnosis.

Genetic testing is currently available for many genetic conditions. However, some conditions do not have a genetic test; either the genetic cause of the condition is unknown or a test has not yet been developed. In these cases, a combination of the approaches listed above may be used to make a diagnosis. Even when genetic testing is available, the tools listed above are used to narrow down the
possibilities (known as a differential diagnosis) and choose the most appropriate genetic tests to pursue.

A diagnosis of a genetic disorder can be made anytime during life, from before birth to old age, depending on when the features of the condition appear and the availability of testing. Sometimes, having a diagnosis can guide treatment and management on page 190 decisions. A genetic diagnosis can also suggest whether other family members may be affected by or at risk of a specific disorder. Even when no treatment is available for a particular condition, having a diagnosis can help people know what to expect and may help them identify useful support and advocacy resources.

For more information about diagnosing genetic conditions:

Genetics Home Reference provides information about genetic testing on page 193 and the importance of family medical history on page 119. Additionally, links to information about the diagnosis of specific genetic disorders are available in each condition summary (https://ghr.nlm.nih.gov/condition) under the heading "Diagnosis & Management."

The National Center for Biotechnology Information (NCBI) provides an in-depth guide called Understanding Genetics (https://www.ncbi.nlm.nih.gov/books/NBK132142/), which includes a chapter about how genetics professionals diagnose many types of genetic disorders.

The Centers for Disease Control and Prevention (CDC) offers a fact sheet about the diagnosis of birth defects (https://www.cdc.gov/ncbddd/birthdefects/diagnosis.html), including information about screening and diagnostic tests.

Boston Children’s Hospital provides this brief overview of testing for genetic disorders (http://www.childrenshospital.org/conditions-and-treatments/conditions/g/genetic-disorders).

The American College of Medical Genetics offers practice guidelines, (https://www.acmg.net/ACMG/Medical-Genetics-Practice-Resources/Practice-Guidelines.aspx) including diagnostic criteria, for several genetic disorders. These guidelines are designed for geneticists and other healthcare providers.

GeneReviews (https://www.ncbi.nlm.nih.gov/books/NBK1116/), a resource from the University of Washington and the NCBI, provides detailed information about the diagnosis of specific genetic disorders as part of each peer-reviewed disease description.

The Undiagnosed Diseases Network (https://undiagnosed.hms.harvard.edu/) is a research study that helps people with diseases that have not been diagnosed. They have information about applying to participate (https://
undiagnosed.hms.harvard.edu/apply/) in this study. The Genetic and Rare Diseases Information Center, a service of the National Institutes of Health, also provides tips for the undiagnosed (https://rarediseases.info.nih.gov/guides/pages/24/tips-for-the-undiagnosed).
How are genetic conditions treated or managed?

Many genetic disorders result from gene changes that are present in essentially every cell in the body. As a result, these disorders often affect many body systems, and most cannot be cured. However, approaches may be available to treat or manage some of the associated signs and symptoms.

For a group of genetic conditions called inborn errors of metabolism, which result from genetic changes that disrupt the production of specific enzymes, treatments sometimes include dietary changes or replacement of the particular enzyme that is missing. Limiting certain substances in the diet can help prevent the buildup of potentially toxic substances that are normally broken down by the enzyme. In some cases, enzyme replacement therapy can help compensate for the enzyme shortage. These treatments are used to manage existing signs and symptoms and may help prevent future complications.

For other genetic conditions, treatment and management strategies are designed to improve particular signs and symptoms associated with the disorder. These approaches vary by disorder and are specific to an individual's health needs. For example, a genetic disorder associated with a heart defect might be treated with surgery to repair the defect or with a heart transplant. Conditions that are characterized by defective blood cell formation, such as sickle cell disease, can sometimes be treated with a bone marrow transplant. Bone marrow transplantation can allow the formation of normal blood cells and, if done early in life, may help prevent episodes of pain and other future complications.

Some genetic changes are associated with an increased risk of future health problems, such as certain forms of cancer. One well-known example is familial breast cancer related to mutations in the $BRCA1$ and $BRCA2$ genes. Management may include more frequent cancer screening or preventive (prophylactic) surgery to remove the tissues at highest risk of becoming cancerous.

Genetic disorders may cause such severe health problems that they are incompatible with life. In the most severe cases, these conditions may cause a miscarriage of an affected embryo or fetus. In other cases, affected infants may be stillborn or die shortly after birth. Although few treatments are available for these severe genetic conditions, health professionals can often provide supportive care, such as pain relief or mechanical breathing assistance, to the affected individual.

Most treatment strategies for genetic disorders do not alter the underlying genetic mutation; however, a few disorders have been treated with gene therapy. This experimental technique involves changing a person’s genes to prevent or treat
a disease. Gene therapy, along with many other treatment and management approaches for genetic conditions, are under study in clinical trials.

Find out more about the treatment and management of genetic conditions:

Links to information about the treatment of specific genetic disorders are available in each Genetics Home Reference condition summary (https://ghr.nlm.nih.gov/condition) under the heading "Where can I find information about diagnosis or management of...?"

GeneReviews (https://www.ncbi.nlm.nih.gov/books/NBK1116/), a resource from the University of Washington and the National Center for Biotechnology Information (NCBI), provides detailed information about the management of specific genetic disorders as part of each peer-reviewed disease description.

The Genetic and Rare Diseases Information Center, a service of the National Institutes of Health, provides this video with suggestions for finding information about treatment (https://www.youtube.com/watch?v=by4nQriQcKs&list=PLtOMdJ_3bSnzlDTV_tD2qOKLraENN9PLv&index=3) for genetic and rare conditions.

Information related to the approaches discussed above is available from MedlinePlus:

- Inborn Errors of Metabolism (https://medlineplus.gov/ency/article/002438.htm)
- Bone Marrow Transplantation (https://medlineplus.gov/bonemarrowtransplantation.html)
- Palliative care (https://medlineplus.gov/palliativecare.html) (also known as supportive care)

The Fetal Treatment Center at the University of California, San Francisco describes stem cell treatments for inherited diseases (https://fetus.ucsf.edu/stem-cells).

Genetics Home Reference offers consumer-friendly information about gene therapy on page 270, including safety, ethical issues, and availability. Information is also available about precision medicine on page 299, an approach to disease diagnosis and treatment that takes into account variations in genes, environment, and lifestyle.

or treatment approach (for example, drug interventions (https://www.clinicaltrials.gov/ct2/search/browse?brwse=intr_cat)).
Genetic Testing

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is genetic testing?</td>
<td>195</td>
</tr>
<tr>
<td>What are the types of genetic tests?</td>
<td>196</td>
</tr>
<tr>
<td>How is genetic testing done?</td>
<td>199</td>
</tr>
<tr>
<td>What is informed consent?</td>
<td>200</td>
</tr>
<tr>
<td>How can consumers be sure a genetic test is valid and useful?</td>
<td>202</td>
</tr>
<tr>
<td>What do the results of genetic tests mean?</td>
<td>204</td>
</tr>
<tr>
<td>What is the cost of genetic testing, and how long does it take to get the results?</td>
<td>206</td>
</tr>
<tr>
<td>Will health insurance cover the costs of genetic testing?</td>
<td>207</td>
</tr>
<tr>
<td>What are the benefits of genetic testing?</td>
<td>208</td>
</tr>
<tr>
<td>What are the risks and limitations of genetic testing?</td>
<td>209</td>
</tr>
<tr>
<td>What is genetic discrimination?</td>
<td>210</td>
</tr>
<tr>
<td>Can genes be patented?</td>
<td>212</td>
</tr>
<tr>
<td>How does genetic testing in a research setting differ from clinical genetic testing?</td>
<td>213</td>
</tr>
<tr>
<td>What are whole exome sequencing and whole genome sequencing?</td>
<td>214</td>
</tr>
<tr>
<td>What are secondary findings from genetic testing?</td>
<td>216</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>What is noninvasive prenatal testing (NIPT) and what disorders can it</td>
<td>219</td>
</tr>
<tr>
<td>screen for?</td>
<td></td>
</tr>
<tr>
<td>What is circulating tumor DNA and how is it used to diagnose and manage</td>
<td>222</td>
</tr>
<tr>
<td>cancer?</td>
<td></td>
</tr>
</tbody>
</table>
What is genetic testing?

Genetic testing is a type of medical test that identifies changes in chromosomes, genes, or proteins. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person's chance of developing or passing on a genetic disorder. More than 1,000 genetic tests are currently in use, and more are being developed.

Several methods can be used for genetic testing:

- Molecular genetic tests (or gene tests) study single genes or short lengths of DNA to identify variations or mutations that lead to a genetic disorder.
- Chromosomal genetic tests analyze whole chromosomes or long lengths of DNA to see if there are large genetic changes, such as an extra copy of a chromosome, that cause a genetic condition.
- Biochemical genetic tests study the amount or activity level of proteins; abnormalities in either can indicate changes to the DNA that result in a genetic disorder.

Genetic testing is voluntary. Because testing has benefits as well as limitations and risks, the decision about whether to be tested is a personal and complex one. A geneticist or genetic counselor can help by providing information about the pros and cons of the test and discussing the social and emotional aspects of testing.

For general information about genetic testing:

MedlinePlus offers a list of links to information about genetic testing (https://medlineplus.gov/genetictesting.html).

You can also search for clinical trials involving genetic testing. ClinicalTrials.gov (https://clinicaltrials.gov/), a service of the National Institutes of Health, provides easy access to information on clinical trials. You can search for specific trials or browse by condition or trial sponsor. You may wish to refer to a list of studies related to genetic testing (https://clinicaltrials.gov/search?term=%22genetic+testing%22) that are accepting (or will accept) participants.
What are the types of genetic tests?

Genetic testing can provide information about a person's genes and chromosomes. Available types of testing include:

Newborn screening

Newborn screening is used just after birth to identify genetic disorders that can be treated early in life. Millions of babies are tested each year in the United States. All states currently test infants for phenylketonuria (a genetic disorder that causes intellectual disability if left untreated) and congenital hypothyroidism (a disorder of the thyroid gland). Most states also test for other genetic disorders.

Diagnostic testing

Diagnostic testing is used to identify or rule out a specific genetic or chromosomal condition. In many cases, genetic testing is used to confirm a diagnosis when a particular condition is suspected based on physical signs and symptoms. Diagnostic testing can be performed before birth or at any time during a person's life, but is not available for all genes or all genetic conditions. The results of a diagnostic test can influence a person's choices about health care and the management of the disorder.

Carrier testing

Carrier testing is used to identify people who carry one copy of a gene mutation that, when present in two copies, causes a genetic disorder. This type of testing is offered to individuals who have a family history of a genetic disorder and to people in certain ethnic groups with an increased risk of specific genetic conditions. If both parents are tested, the test can provide information about a couple's risk of having a child with a genetic condition.

Prenatal testing

Prenatal testing is used to detect changes in a fetus's genes or chromosomes before birth. This type of testing is offered during pregnancy if there is an increased risk that the baby will have a genetic or chromosomal disorder. In some cases, prenatal testing can lessen a couple's uncertainty or help them make decisions about a pregnancy. It cannot identify all possible inherited disorders and birth defects, however.
Preimplantation testing

Preimplantation testing, also called preimplantation genetic diagnosis (PGD), is a specialized technique that can reduce the risk of having a child with a particular genetic or chromosomal disorder. It is used to detect genetic changes in embryos that were created using assisted reproductive techniques such as in-vitro fertilization. In-vitro fertilization involves removing egg cells from a woman’s ovaries and fertilizing them with sperm cells outside the body. To perform preimplantation testing, a small number of cells are taken from these embryos and tested for certain genetic changes. Only embryos without these changes are implanted in the uterus to initiate a pregnancy.

Predictive and presymptomatic testing

Predictive and presymptomatic types of testing are used to detect gene mutations associated with disorders that appear after birth, often later in life. These tests can be helpful to people who have a family member with a genetic disorder, but who have no features of the disorder themselves at the time of testing. Predictive testing can identify mutations that increase a person’s risk of developing disorders with a genetic basis, such as certain types of cancer. Presymptomatic testing can determine whether a person will develop a genetic disorder, such as hereditary hemochromatosis (an iron overload disorder), before any signs or symptoms appear. The results of predictive and presymptomatic testing can provide information about a person’s risk of developing a specific disorder and help with making decisions about medical care.

Forensic testing

Forensic testing uses DNA sequences to identify an individual for legal purposes. Unlike the tests described above, forensic testing is not used to detect gene mutations associated with disease. This type of testing can identify crime or catastrophe victims, rule out or implicate a crime suspect, or establish biological relationships between people (for example, paternity).

For more information about the uses of genetic testing:

A Brief Primer on Genetic Testing (https://www.genome.gov/10506784/a-brief-primer-on-genetic-testing), which outlines the different kinds of genetic tests, is available from the National Human Genome Research Institute.

The National Society of Genetic Counselors provides an overview of the different types of genetic testing (http://aboutgeneticcounselors.com/Genetic-Testing) that are available.

The University of Pennsylvania offers an explanation of preimplantation genetic diagnosis (https://www.pennmedicine.org/for-patients-and-visitors/find-a-program-or-service/penn-fertility-care/embryo-screening).

The National Newborn Screening and Genetics Resource Center (http://genes-r-us.uthscsa.edu/) offers detailed information about newborn screening.

For information about forensic DNA testing, refer to the fact sheet about forensic genetic testing (https://www.genetics.edu.au/publications-and-resources/facts-sheets/fact-sheet-17-forensic-paternity-and-ancestry-dna-testing) from the Centre for Genetics Education and a page about forensic DNA analysis (https://learn.genetics.utah.edu/content/science/forensics/) from the Genetic Science Learning Center at the University of Utah.
How is genetic testing done?

Once a person decides to proceed with genetic testing, a medical geneticist, primary care doctor, specialist, or nurse practitioner can order the test. Genetic testing is often done as part of a genetic consultation.

Genetic tests are performed on a sample of blood, hair, skin, amniotic fluid (the fluid that surrounds a fetus during pregnancy), or other tissue. For example, a procedure called a buccal smear uses a small brush or cotton swab to collect a sample of cells from the inside surface of the cheek. The sample is sent to a laboratory where technicians look for specific changes in chromosomes, DNA, or proteins, depending on the suspected disorder. The laboratory reports the test results in writing to a person's doctor or genetic counselor, or directly to the patient if requested.

Newborn screening tests are done on a small blood sample, which is taken by pricking the baby's heel. Unlike other types of genetic testing, a parent will usually only receive the result if it is positive. If the test result is positive, additional testing is needed to determine whether the baby has a genetic disorder.

Before a person has a genetic test, it is important that he or she understands the testing procedure, the benefits and limitations of the test, and the possible consequences of the test results. The process of educating a person about the test and obtaining permission is called informed consent on page 200.

For more information about genetic testing procedures:

A brief overview of how genetic testing is done (https://www.cancer.gov/about-cancer/causes-prevention/genetics/genetic-testing-fact-sheet#q5) is also available from The National Cancer Institute.

The Genetic Science Learning Center at the University of Utah provides an interactive animation of DNA extraction techniques (https://learn.genetics.utah.edu/content/labs/extraction/).
What is informed consent?

Before a person has a genetic test, it is important that he or she fully understands the testing procedure, the benefits and limitations of the test, and the possible consequences of the test results. The process of educating a person about the test and obtaining permission to carry out testing is called informed consent. "Informed" means that the person has enough information to make an educated decision about testing; "consent" refers to a person's voluntary agreement to have the test done.

In general, informed consent can only be given by adults who are competent to make medical decisions for themselves. For children and others who are unable to make their own medical decisions (such as people with impaired mental status), informed consent can be given by a parent, guardian, or other person legally responsible for making decisions on that person's behalf.

Informed consent for genetic testing is generally obtained by a doctor or genetic counselor during an office visit. The healthcare provider will discuss the test and answer any questions. If the person wishes to have the test, he or she will then usually read and sign a consent form.

Several factors are commonly included on an informed consent form:

- A general description of the test, including the purpose of the test and the condition for which the testing is being performed.
- How the test will be carried out (for example, a blood sample).
- What the test results mean, including positive and negative results, and the potential for uninformative results or incorrect results such as false positives or false negatives.
- Any physical or emotional risks associated with the test.
- Whether the results can be used for research purposes.
- Whether the results might provide information about other family members' health, including the risk of developing a particular condition or the possibility of having affected children.
- How and to whom test results will be reported and under what circumstances results can be disclosed (for example, to health insurance providers).
- What will happen to the test specimen after the test is complete.
• Acknowledgement that the person requesting testing has had the opportunity to discuss the test with a healthcare professional.

• The individual's signature, and possibly that of a witness.

The elements of informed consent may vary, because some states have laws that specify factors that must be included. (For example, some states require disclosure that the test specimen will be destroyed within a certain period of time after the test is complete.)

Informed consent is not a contract, so a person can change his or her mind at any time after giving initial consent. A person may choose not to go through with genetic testing even after the test sample has been collected. A person simply needs to notify the healthcare provider if he or she decides not to continue with the testing process.

For more information about informed consent:

The Centers for Disease Control and Prevention offers several examples of state-required components of informed consent for genetic testing (https://www.cdc.gov/mmwr/preview/mmwrhtml/rr5806a3.htm).
How can consumers be sure a genetic test is valid and useful?

Before undergoing genetic testing, it is important to be sure that the test is valid and useful. A genetic test is valid if it provides an accurate result. Two main measures of accuracy apply to genetic tests: analytical validity and clinical validity. Another measure of the quality of a genetic test is its usefulness, or clinical utility.

- Analytical validity refers to how well the test predicts the presence or absence of a particular gene or genetic change. In other words, can the test accurately detect whether a specific genetic variant is present or absent?
- Clinical validity refers to how well the genetic variant being analyzed is related to the presence, absence, or risk of a specific disease.
- Clinical utility refers to whether the test can provide information about diagnosis, treatment, management, or prevention of a disease that will be helpful to a consumer.

All laboratories that perform health-related testing, including genetic testing, are subject to federal regulatory standards called the Clinical Laboratory Improvement Amendments (CLIA) or even stricter state requirements. CLIA standards cover how tests are performed, the qualifications of laboratory personnel, and quality control and testing procedures for each laboratory. By controlling the quality of laboratory practices, CLIA standards are designed to ensure the analytical validity of genetic tests.

CLIA standards do not address the clinical validity or clinical utility of genetic tests. The Food and Drug Administration (FDA) requires information about clinical validity for some genetic tests. Additionally, the state of New York requires information on clinical validity for all laboratory tests performed for people living in that state. Consumers, health providers, and health insurance companies are often the ones who determine the clinical utility of a genetic test.

It can be difficult to determine the quality of a genetic test sold directly to the public. Some providers of direct-to-consumer genetic tests on page 227 are not CLIA-certified, so it can be difficult to tell whether their tests are valid. If providers of direct-to-consumer genetic tests offer easy-to-understand information about the scientific basis of their tests, it can help consumers make more informed decisions. It may also be helpful to discuss any concerns with a health professional before ordering a direct-to-consumer genetic test.
For more information about determining the quality of genetic tests:

The Centers for Disease Control and Prevention (CDC) provides an explanation of the factors used to evaluate genetic tests (https://www.cdc.gov/genomics/gtesting/ACCE/), including analytical validity, clinical validity, and clinical utility, as part of their ACCE project.

The U.S. Centers for Medicare and Medicaid Services (CMS) provide an overview of the Clinical Laboratory Improvement Amendments (CLIA) (https://www.cms.gov/Regulations-and-Guidance/Legislation/CLIA/).
What do the results of genetic tests mean?

The results of genetic tests are not always straightforward, which often makes them challenging to interpret and explain. Therefore, it is important for patients and their families to ask questions about the potential meaning of genetic test results both before and after the test is performed. When interpreting test results, healthcare professionals consider a person’s medical history, family history, and the type of genetic test that was done.

A positive test result means that the laboratory found a change in a particular gene, chromosome, or protein of interest. Depending on the purpose of the test, this result may confirm a diagnosis, indicate that a person is a carrier of a particular genetic mutation, identify an increased risk of developing a disease (such as cancer) in the future, or suggest a need for further testing. Because family members have some genetic material in common, a positive test result may also have implications for certain blood relatives of the person undergoing testing. It is important to note that a positive result of a predictive or presymptomatic genetic test usually cannot establish the exact risk of developing a disorder. Also, health professionals typically cannot use a positive test result to predict the course or severity of a condition.

A negative test result means that the laboratory did not find a change in the gene, chromosome, or protein under consideration. This result can indicate that a person is not affected by a particular disorder, is not a carrier of a specific genetic mutation, or does not have an increased risk of developing a certain disease. It is possible, however, that the test missed a disease-causing genetic alteration because many tests cannot detect all genetic changes that can cause a particular disorder. Further testing may be required to confirm a negative result.

In some cases, a test result might not give any useful information. This type of result is called uninformative, indeterminate, inconclusive, or ambiguous. Uninformative test results sometimes occur because everyone has common, natural variations in their DNA, called polymorphisms, that do not affect health. If a genetic test finds a change in DNA that has not been associated with a disorder in other people, it can be difficult to tell whether it is a natural polymorphism or a disease-causing mutation. An uninformative result cannot confirm or rule out a specific diagnosis, and it cannot indicate whether a person has an increased risk of developing a disorder. In some cases, testing other affected and unaffected family members can help clarify this type of result.

For more information about interpreting genetic test results:

genetic-testing-fact-sheet#q6) provides an explanation of positive and negative genetic test results.

What is the cost of genetic testing, and how long does it take to get the results?

The cost of genetic testing can range from under $100 to more than $2,000, depending on the nature and complexity of the test. The cost increases if more than one test is necessary or if multiple family members must be tested to obtain a meaningful result. For newborn screening, costs vary by state. Some states cover part of the total cost, but most charge a fee of $15 to $60 per infant.

From the date that a sample is taken, it may take a few weeks to several months to receive the test results. Results for prenatal testing are usually available more quickly because time is an important consideration in making decisions about a pregnancy. The doctor or genetic counselor who orders a particular test can provide specific information about the cost and time frame associated with that test.

For more information about the logistics of genetic testing:

EuroGentest offers a fact sheet about genetic testing laboratories (http://www.eurogentest.org/index.php?id=621), including the reasons why some genetic test results take longer than others.
Will health insurance cover the costs of genetic testing?

In many cases, health insurance plans will cover the costs of genetic testing when it is recommended by a person's doctor. Health insurance providers have different policies about which tests are covered, however. A person interested in submitting the costs of testing may wish to contact his or her insurance company beforehand to ask about coverage.

Some people may choose not to use their insurance to pay for testing because the results of a genetic test can affect a person's insurance coverage. Instead, they may opt to pay out-of-pocket for the test. People considering genetic testing may want to find out more about their state's privacy protection laws before they ask their insurance company to cover the costs. (Refer to What is genetic discrimination? on page 210 for more information.)

For more information about insurance coverage of genetic testing:

What are the benefits of genetic testing?

Genetic testing has potential benefits whether the results are positive or negative for a gene mutation. Test results can provide a sense of relief from uncertainty and help people make informed decisions about managing their health care. For example, a negative result can eliminate the need for unnecessary checkups and screening tests in some cases. A positive result can direct a person toward available prevention, monitoring, and treatment options. Some test results can also help people make decisions about having children. Newborn screening can identify genetic disorders early in life so treatment can be started as early as possible.

For more information about the benefits of genetic testing:

EuroGentest offers a fact sheet about genetic testing (http://www.eurogentest.org/index.php?id=622), including a section on its benefits.
What are the risks and limitations of genetic testing?

The physical risks associated with most genetic tests are very small, particularly for those tests that require only a blood sample or buccal smear (a method that samples cells from the inside surface of the cheek). The procedures used for prenatal testing carry a small but real risk of losing the pregnancy (miscarriage) because they require a sample of amniotic fluid or tissue from around the fetus.

Many of the risks associated with genetic testing involve the emotional, social, or financial consequences of the test results. People may feel angry, depressed, anxious, or guilty about their results. In some cases, genetic testing creates tension within a family because the results can reveal information about other family members in addition to the person who is tested. The possibility of genetic discrimination in employment or insurance is also a concern. (Refer to What is genetic discrimination? on page 210 for additional information.)

Genetic testing can provide only limited information about an inherited condition. The test often can't determine if a person will show symptoms of a disorder, how severe the symptoms will be, or whether the disorder will progress over time. Another major limitation is the lack of treatment strategies for many genetic disorders once they are diagnosed.

A genetics professional can explain in detail the benefits, risks, and limitations of a particular test. It is important that any person who is considering genetic testing understand and weigh these factors before making a decision.

For more information about the risks and limitations of genetic testing:

The American College of Medical Genetics and Genomics (ACMG) published a policy statement about the risks associated with incorrect genetic test results or interpretation (https://www.acmg.net/docs/LDT_Release.pdf).

EuroGentest offers a fact sheet about genetic testing (http://www.eurogentest.org/index.php?id=622), including a section on its possible risks and limitations.
What is genetic discrimination?

Genetic discrimination occurs when people are treated differently by their employer or insurance company because they have a gene mutation that causes or increases the risk of an inherited disorder. Fear of discrimination is a common concern among people considering genetic testing.

Several laws at the federal and state levels help protect people against genetic discrimination. In particular, a federal law called the Genetic Information Nondiscrimination Act (GINA) is designed to protect people from this form of discrimination.

GINA has two parts: Title I, which prohibits genetic discrimination in health insurance, and Title II, which prohibits genetic discrimination in employment. Title I makes it illegal for health insurance providers to use or require genetic information to make decisions about a person's insurance eligibility or coverage. This part of the law went into effect on May 21, 2009. Title II makes it illegal for employers to use a person's genetic information when making decisions about hiring, promotion, and several other terms of employment. This part of the law went into effect on November 21, 2009.

GINA and other laws do not protect people from genetic discrimination in every circumstance. For example, GINA does not apply when an employer has fewer than 15 employees. It does not cover people in the U.S. military or those receiving health benefits through the Veterans Health Administration or Indian Health Service. GINA also does not protect against genetic discrimination in forms of insurance other than health insurance, such as life, disability, or long-term care insurance.

For more information about genetic discrimination and GINA:

The National Human Genome Research Institute provides detailed discussions of genetic discrimination and current laws that address this issue:

The Genetic Alliance offers links to resources and policy statements on genetic discrimination (http://www.geneticalliance.org/advocacy/policyissues/geneticdiscrimination).

More detailed information about GINA is available from these resources

- Coalition for Genetic Fairness (http://www.geneticfairness.org/ginaresource.html)
- GINAHelp.org (http://www.ginahelp.org/)
Can genes be patented?

A gene patent is the exclusive rights to a specific sequence of DNA (a gene) given by a government to the individual, organization, or corporation who claims to have first identified the gene. Once granted a gene patent, the holder of the patent dictates how the gene can be used, in both commercial settings, such as clinical genetic testing, and in noncommercial settings, including research, for 20 years from the date of the patent. Gene patents have often resulted in companies having sole ownership of genetic testing for patented genes.

On June 13, 2013, in the case of the Association for Molecular Pathology v. Myriad Genetics, Inc., the Supreme Court of the United States ruled that human genes cannot be patented in the U.S. because DNA is a "product of nature." The Court decided that because nothing new is created when discovering a gene, there is no intellectual property to protect, so patents cannot be granted. Prior to this ruling, more than 4,300 human genes were patented. The Supreme Court's decision invalidated those gene patents, making the genes accessible for research and for commercial genetic testing.

The Supreme Court's ruling did allow that DNA manipulated in a lab is eligible to be patented because DNA sequences altered by humans are not found in nature. The Court specifically mentioned the ability to patent a type of DNA known as complementary DNA (cDNA). This synthetic DNA is produced from the molecule that serves as the instructions for making proteins (called messenger RNA).

For more information about gene patenting and the Supreme Court ruling:

Read the Supreme Court ruling (https://www.supremecourt.gov/opinions/12pdf/12-398_1b7d.pdf) against gene patenting.

How does genetic testing in a research setting differ from clinical genetic testing?

The main differences between clinical genetic testing and research testing are the purpose of the test and who receives the results. The goals of research testing include finding unknown genes, learning how genes work, developing tests for future clinical use, and advancing our understanding of genetic conditions. The results of testing done as part of a research study are usually not available to patients or their healthcare providers. Clinical testing, on the other hand, is done to find out about an inherited disorder in an individual patient or family. People receive the results of a clinical test and can use them to help them make decisions about medical care or reproductive issues.

It is important for people considering genetic testing to know whether the test is available on a clinical or research basis. Clinical and research testing both involve a process of informed consent on page 200 in which patients learn about the testing procedure, the risks and benefits of the test, and the potential consequences of testing.

For more information about the differences between clinical and research testing:

The Ohio State University’s Wexner Medical Center describes the difference between clinical and research genetic testing (https://wexnermedical.osu.edu/genetics/facts-about-testing).

The Sudden Arrhythmia Death Syndromes (SADS) Foundation also outlines the major differences between clinical tests and research tests (https://www.sads.org/Living-with-SADS/Genetic-Testing/Genetic-Testing---Clinical-vs--Research).

The Columbia University Medical Center offers a table that summarizes the major differences between clinical genetic testing and genetic research (http://www.columbianeurology.org/research/divisions-and-programs/movement-disorders/genetic-research).

Additional information about clinical and research tests (https://www.ncbi.nlm.nih.gov/gtr/docs/about/#tests) is available from the Genetic Testing Registry.
What are whole exome sequencing and whole genome sequencing?

Determining the order of DNA building blocks (nucleotides) in an individual's genetic code, called DNA sequencing, has advanced the study of genetics and is one technique used to test for genetic disorders. Two methods, whole exome sequencing and whole genome sequencing, are increasingly used in healthcare and research to identify genetic variations; both methods rely on new technologies that allow rapid sequencing of large amounts of DNA. These approaches are known as next-generation sequencing (or next-gen sequencing).

The original sequencing technology, called Sanger sequencing (named after the scientist who developed it, Frederick Sanger), was a breakthrough that helped scientists determine the human genetic code, but it is time-consuming and expensive. The Sanger method has been automated to make it faster and is still used in laboratories today to sequence short pieces of DNA, but it would take years to sequence all of a person's DNA (known as the person's genome). Next-generation sequencing has sped up the process (taking only days to weeks to sequence a human genome) while reducing the cost.

With next-generation sequencing, it is now feasible to sequence large amounts of DNA, for instance all the pieces of an individual's DNA that provide instructions for making proteins. These pieces, called exons, are thought to make up 1 percent of a person's genome. Together, all the exons in a genome are known as the exome, and the method of sequencing them is known as whole exome sequencing. This method allows variations in the protein-coding region of any gene to be identified, rather than in only a select few genes. Because most known mutations that cause disease occur in exons, whole exome sequencing is thought to be an efficient method to identify possible disease-causing mutations.

However, researchers have found that DNA variations outside the exons can affect gene activity and protein production and lead to genetic disorders--variations that whole exome sequencing would miss. Another method, called whole genome sequencing, determines the order of all the nucleotides in an individual's DNA and can determine variations in any part of the genome.

While many more genetic changes can be identified with whole exome and whole genome sequencing than with select gene sequencing, the significance of much of this information is unknown. Because not all genetic changes affect health, it is difficult to know whether identified variants are involved in the condition of interest. Sometimes, an identified variant is associated with a different genetic disorder that has not yet been diagnosed (these are called incidental or secondary findings on page 216).
In addition to being used in the clinic, whole exome and whole genome sequencing are valuable methods for researchers. Continued study of exome and genome sequences can help determine whether new genetic variations are associated with health conditions, which will aid disease diagnosis in the future.

For more information about DNA sequencing technologies and their use:

Genetics Home Reference discusses whether all genetic changes affect health and development on page 25.

An illustration of the decline in the cost of DNA sequencing (https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost), including that caused by the introduction of new technologies, is provided by the National Human Genome Research Institute.

The American College of Medical Genetics and Genomics has laid out their policies regarding whole exome and whole genome sequencing (https://www.acmg.net/PDFLibrary/Genomic-Sequencing-Clinical-Application.pdf), including when these methods should be used, what results may arise, and what the results might indicate.

The PHG Foundation provides an overview of whole genome sequencing (http://www.phgfoundation.org/documents/279_1319536722.pdf) and how it can be used in healthcare.

The Mount Sinai School of Medicine Genomics Core Facility describes the techniques used in whole exome sequencing (https://icahn.mssm.edu/research/genomics/core-facility/whole-exome).

What are secondary findings from genetic testing?

Secondary findings are genetic test results that provide information about changes (variants) in a gene unrelated to the primary purpose for the testing.

When a clinician orders a genetic test on page 195 to discover the genetic cause of a particular condition, the test will often sequence one or a few genes that seem most likely to be associated with that individual’s set of signs and symptoms. However, if the individual’s signs and symptoms do not have an obvious genetic cause, a clinician might order a test that sequences all of the pieces of an individual’s DNA that provide instructions for making proteins (called an exome) or a test that sequences all of an individual’s DNA building blocks (nucleotides), called a genome. These tests are called whole exome sequencing and whole genome sequencing on page 214, respectively.

Many more genetic changes can be identified with whole exome and whole genome sequencing than by sequencing just one or a few genes. Sometimes, testing finds a variant that is associated with a condition other than the one for which testing was originally indicated. This is called a secondary finding. Some individuals with a secondary finding may not yet have any of the symptoms associated with the condition, but may be at risk of developing it later in life. For example, a person with a variant in the *BRCA1* gene, which is associated with an increased risk of breast and ovarian cancer, may not have developed cancer. Other individuals with secondary findings may have a known medical condition, such as extremely high cholesterol, but receive results that indicate a genetic cause for that condition, such as a variant in the *LDLR* gene.

In 2013 (and again in 2017), the American College of Medical Genetics and Genomics (ACMG) recommended that all labs performing whole exome and whole genome sequencing tests include the reporting of secondary findings, in addition to any variants that are found related to the primary purpose of the testing. The ACMG proposed a list of 59 genes that are associated with a variety of conditions, from cancer to heart disease. The 59 genes for which secondary findings are reported were chosen because they are associated with conditions that have a definable set of clinical features, the possibility of early diagnosis, a reliable clinical genetic test, and effective intervention or treatment. The goal of reporting these secondary findings to an individual is to provide medical benefit by preventing or better managing health conditions. The variants that are reported are known to cause disease. Variants of unknown significance on page 25, whose involvement in disease at the current time is unclear, are not reported.

The information provided by secondary findings can be very important because it may help prevent a disease from occurring or guide the management of signs and symptoms if the disease develops or is already present. However, as with
any type of medical diagnosis, the news of an unexpected potential health problem may lead to additional health costs and stress for individuals and their families. On the basis of secondary findings, additional testing to confirm results, ongoing screening tests, or preventive care may be advised. Individuals receiving whole exome or whole genome sequencing can choose to “opt out” of analysis of the 59 secondary finding genes and not receive variant results. As whole exome and whole genome sequencing become more common, it is important for individuals to understand what type of information they may learn and how it can impact their medical care.

Scientific journal articles for further reading

Learn more about secondary genetic findings:

The Hospital for Sick Children in Toronto, Canada, provides a video that explains the process of receiving secondary findings (http://www.sickkids.ca/CGM/education/secondary-findings.html) from whole exome sequencing.

The Columbia University Medical Center has videos giving an Introduction to Secondary Findings (http://www.learninggenetics.org/secondary-findings.html) as well as discussing the Pros and Cons of Secondary Findings (http://

Genetics Home Reference has information on the genetic conditions (https://ghr.nlm.nih.gov/search?query=acmg&tab=condition) that are associated with the 59 ACMG-recommended secondary finding genes.
What is noninvasive prenatal testing (NIPT) and what disorders can it screen for?

Noninvasive prenatal testing (NIPT), sometimes called noninvasive prenatal screening (NIPS), is a method of determining the risk that the fetus will be born with certain genetic abnormalities. This testing analyzes small fragments of DNA that are circulating in a pregnant woman’s blood. Unlike most DNA, which is found inside a cell’s nucleus, these fragments are free-floating and not within cells, and so are called cell-free DNA (cfDNA). These small fragments usually contain fewer than 200 DNA building blocks (base pairs) and arise when cells die off and get broken down and their contents are released into the bloodstream.

During pregnancy, the mother’s bloodstream contains a mix of cfDNA that comes from her cells and cells from the placenta. The placenta is tissue in the uterus that links the fetus and the mother’s blood supply. These cells are shed into the mother’s bloodstream throughout pregnancy. The DNA in placental cells is usually identical to the DNA of the fetus. Analyzing cfDNA from the placenta provides an opportunity for early detection of certain genetic abnormalities without harming the fetus.

NIPT is most often used to look for chromosomal disorders that are caused by the presence of an extra or missing copy (aneuploidy on page 35) of a chromosome. NIPT primarily looks for Down syndrome (trisomy 21, caused by an extra chromosome 21), trisomy 18 (caused by an extra chromosome 18), trisomy 13 (caused by an extra chromosome 13), and extra or missing copies of the X chromosome and Y chromosome (the sex chromosomes). The accuracy of the test varies by disorder.

NIPT may include screening for additional chromosomal disorders on page 42 that are caused by missing (deleted) or copied (duplicated) sections of a chromosome. NIPT is beginning to be used to test for genetic disorders that are caused by changes (variants) in single genes. As technology improves and the cost of genetic testing decreases, researchers expect that NIPT will become available for many more genetic conditions.

NIPT is considered noninvasive because it requires drawing blood only from the pregnant woman and does not pose any risk to the fetus. NIPT is a screening test, which means that it will not give a definitive answer about whether or not a fetus has a genetic condition. The test can only estimate whether the risk of having certain conditions is increased or decreased. In some cases, NIPT results indicate an increased risk for a genetic abnormality when the fetus is actually unaffected (false positive), or the results indicate a decreased risk for a genetic
abnormality when the fetus is actually affected (false negative). Because NIPT analyzes both fetal and maternal cfDNA, the test may detect a genetic condition in the mother.

There must be enough fetal cfDNA in the mother’s bloodstream to be able to identify fetal chromosome abnormalities. The proportion of cfDNA in maternal blood that comes from the placenta is known as the fetal fraction. Generally, the fetal fraction must be above 4 percent, which typically occurs around the tenth week of pregnancy. Low fetal fractions can lead to an inability to perform the test or a false negative result. Reasons for low fetal fractions include testing too early in the pregnancy, sampling errors, maternal obesity, and fetal abnormality.

There are multiple NIPT methods to analyze fetal cfDNA. To determine chromosomal aneuploidy, the most common method is to count all cfDNA fragments (both fetal and maternal). If the percentage of cfDNA fragments from each chromosome is as expected, then the fetus has a decreased risk of having a chromosomal condition (negative test result). If the percentage of cfDNA fragments from a particular chromosome is more than expected, then the fetus has an increased likelihood of having a trisomy condition (positive test result). A positive screening result indicates that further testing (called diagnostic testing on page 187, because it is used to diagnose a disease) should be performed to confirm the result.

Scientific journal articles for further reading

For more information about NIPT:

Dana-Farber Cancer Institute: Cell-free DNA (https://www.dana-farber.org/research/departments-centers-and-labs/integrative-research-centers/center-for-cancer-genome-discovery/cell-free-dna/)

Genomics Education Programme (UK): What is NIPT? (https://www.genomicseducation.hee.nhs.uk/what-is-nipt/)

American College of Obstetricians and Gynecologists: Cell-free DNA Prenatal Screening Test Infographic (https://www.acog.org/-/media/For-Patients/pfsl008.pdf?dmc=1&ts=20180613T1631181843)

Genetic Support Foundation: Prenatal Cell-free DNA (cfDNA) Screening (https://www.geneticsupport.org/genetics-pregnancy/prenatal-screening-tests/cell-free-dna-screening/)
What is circulating tumor DNA and how is it used to diagnose and manage cancer?

Circulating tumor DNA (ctDNA) is found in the bloodstream and refers to DNA on page 10 that comes from cancerous cells and tumors. Most DNA is inside a cell’s nucleus. As a tumor grows, cells die and are replaced by new ones. The dead cells get broken down and their contents on page 5, including DNA, are released into the bloodstream. ctDNA are small pieces of DNA, usually comprising fewer than 200 building blocks (nucleotides) in length.

The quantity of ctDNA varies among individuals and depends on the type of tumor, its location, and for cancerous tumors, the cancer stage.

Detection of ctDNA can be helpful in the following cases:

- Detecting and diagnosing a tumor. Because tumor DNA has acquired multiple genetic mutations on page 22, leading to tumor development, ctDNA is not an exact match to the individual’s DNA. Finding DNA with genetic differences aids in tumor detection. Diagnosing the type of tumor using ctDNA can reduce the need for getting a sample of the tumor tissue (tumor biopsy), which can be challenging when a tumor is difficult to access, such as a tumor in the brain or lung.

- Guiding tumor-specific treatment. Analyzing the genome of tumor cells using ctDNA can help doctors determine which treatment will be most effective. Currently, however, approval from the U.S. Food and Drug Administration for ctDNA testing to personalize cancer treatment is limited.

- Monitoring treatment. A decrease in the quantity of ctDNA suggests the tumor is shrinking and treatment is successful.

- Monitoring periods with no symptoms (remission of cancer). A lack of ctDNA in the bloodstream indicates that the cancer has not returned.
Scientists have discovered that dying tumor cells release small pieces of their DNA into the bloodstream. These pieces are called cell-free circulating tumor DNA (ctDNA).

Scientific journal articles for further reading

For more information about ctDNA:

My Cancer Genome: Circulating Tumor DNA (https://www.mycancergenome.org/content/molecular-medicine/circulating-tumor-dna/)

Direct-to-Consumer Genetic Testing

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is direct-to-consumer genetic testing?</td>
<td>227</td>
</tr>
<tr>
<td>What kinds of direct-to-consumer genetic tests are available?</td>
<td>229</td>
</tr>
<tr>
<td>What is genetic ancestry testing?</td>
<td>231</td>
</tr>
<tr>
<td>What are the benefits and risks of direct-to-consumer genetic testing?</td>
<td>234</td>
</tr>
<tr>
<td>How do I choose a direct-to-consumer genetic testing company?</td>
<td>236</td>
</tr>
<tr>
<td>How is direct-to-consumer genetic testing done?</td>
<td>238</td>
</tr>
<tr>
<td>How much does direct-to-consumer genetic testing cost, and is it covered by health insurance?</td>
<td>239</td>
</tr>
<tr>
<td>What do the results of direct-to-consumer genetic testing mean?</td>
<td>240</td>
</tr>
<tr>
<td>What can raw data from a direct-to-consumer genetic test tell me?</td>
<td>242</td>
</tr>
<tr>
<td>Can a direct-to-consumer genetic test tell me whether I will develop cancer?</td>
<td>244</td>
</tr>
<tr>
<td>Can a direct-to-consumer genetic test tell me whether I will develop Alzheimer disease?</td>
<td>246</td>
</tr>
<tr>
<td>What does it mean to have Neanderthal or Denisovan DNA?</td>
<td>248</td>
</tr>
<tr>
<td>How do direct-to-consumer genetic testing companies protect their customers’ privacy?</td>
<td>251</td>
</tr>
<tr>
<td>Can the results of direct-to-consumer genetic testing affect my ability to get insurance?</td>
<td>254</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Where can I read more about the diseases and traits covered in my direct-to-consumer genetic testing report?</td>
<td>255</td>
</tr>
</tbody>
</table>
What is direct-to-consumer genetic testing?

Most of the time, genetic testing is done through healthcare providers such as physicians, nurse practitioners, and genetic counselors. Healthcare providers determine which test is needed, order the test from a laboratory, collect and send the DNA sample, interpret the test results, and share the results with the patient. Often, a health insurance company covers part or all of the cost of testing.

Direct-to-consumer genetic testing is different: these genetic tests are marketed directly to customers via television, print advertisements, or the Internet, and the tests can be bought online or in stores. Customers send the company a DNA sample and receive their results directly from a secure website or in a written report. Direct-to-consumer genetic testing provides people access to their genetic information without necessarily involving a healthcare provider or health insurance company in the process.

Dozens of companies currently offer direct-to-consumer genetic tests for a variety of purposes. The most popular tests use genetic variations to make predictions about health, provide information about common traits, and offer clues about a person’s ancestry. The number of companies providing direct-to-consumer genetic testing is growing, along with the range of health conditions and traits covered by these tests. Because there is currently little regulation of direct-to-consumer genetic testing services, it is important to assess the quality of available services before pursuing any testing.

Other names for direct-to-consumer genetic testing include DTC genetic testing, direct-access genetic testing, at-home genetic testing, and home DNA testing. Ancestry testing on page 231 (also called genealogy testing) is also considered a form of direct-to-consumer genetic testing.
For more information about direct-to-consumer genetic testing:

What kinds of direct-to-consumer genetic tests are available?

With so many companies offering direct-to-consumer genetic testing, it can be challenging to determine which tests will be most informative and helpful to you. When considering testing, think about what you hope to get out of the test. Some direct-to-consumer genetic tests are very specific (such as paternity tests), while other services provide a broad range of health, ancestry, and lifestyle information.

Major types of direct-to-consumer genetic tests include:

Disease risk and health

The results of these tests estimate your genetic risk of developing several common diseases, such as celiac disease, Parkinson disease, and Alzheimer disease. Some companies also include a person's carrier status for less common conditions, including cystic fibrosis and sickle cell disease. A carrier is someone who has one copy of a gene mutation that, when present in two copies, causes a genetic disorder. The tests may also look for genetic variations related to other health-related traits, such as weight and metabolism (how a person's body converts the nutrients from food into energy).

Ancestry or genealogy

The results of these tests provide clues about where a person's ancestors might have come from, their ethnicity, and genetic connections between families. For more information, see What is genetic ancestry testing? on page 231

Kinship

The results of these tests can indicate whether tested individuals are biologically related to one another. For example, kinship testing can establish whether one person is the biological father of another (paternity testing). The results of direct-to-consumer kinship tests, including paternity tests, are usually not admissible in a court of law.

Lifestyle

The results of these tests claim to provide information about lifestyle factors, such as nutrition, fitness, weight loss, skincare, sleep, and even your wine preferences, based on variations in your DNA. Many of the companies that offer this kind of testing also sell services, products, or programs that they customize on the basis of your test results.
Before choosing a direct-to-consumer genetic test, find out what kinds of health, ancestry, or other information will be reported to you. Think about whether there is any information you would rather not know. In some cases, you can decline to find out specific information if you tell the company before it delivers your results.

Learn more about the available types of direct-to-consumer genetic testing:

Genetics Generation: Types of DTC Testing (http://knowgenetics.org/kinds-of-dtc-testing/)

Michigan State University: Choosing the right DNA test for your needs (https://www.canr.msu.edu/news/choosing_the_right_dna_test_for_your_needs)

Applied & Translational Genomics (free full-text via PubMed Central): Only a click away — DTC genetics for ancestry, health, love…and more: A view of the business and regulatory landscape (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4796702/)

What is genetic ancestry testing?

Genetic ancestry testing, or genetic genealogy, is a way for people interested in family history (genealogy) to go beyond what they can learn from relatives or from historical documentation. Examination of DNA variations can provide clues about where a person's ancestors might have come from and about relationships between families. Certain patterns of genetic variation are often shared among people of particular backgrounds. The more closely related two individuals, families, or populations are, the more patterns of variation they typically share.

Three types of genetic ancestry testing are commonly used for genealogy:

Y chromosome testing

Variations in the Y chromosome, passed exclusively from father to son, can be used to explore ancestry in the direct male line. Y chromosome testing can only be done on males, because females do not have a Y chromosome. However, women interested in this type of genetic testing sometimes recruit a male relative to have the test done. Because the Y chromosome is passed on in the same pattern as are family names in many cultures, Y chromosome testing is often used to investigate questions such as whether two families with the same surname are related.

Mitochondrial DNA testing

This type of testing identifies genetic variations in mitochondrial DNA. Although most DNA is packaged in chromosomes within the cell nucleus, cell structures called mitochondria also have a small amount of their own DNA (known as mitochondrial DNA). Both males and females have mitochondrial DNA, which is passed on from their mothers, so this type of testing can be used by either sex. It provides information about the direct female ancestral line. Mitochondrial DNA testing can be useful for genealogy because it preserves information about female ancestors that may be lost from the historical record because of the way surnames are often passed down.
Single nucleotide polymorphism testing

These tests evaluate large numbers of variations (single nucleotide polymorphisms on page 286 or SNPs) across a person’s entire genome. The results are compared with those of others who have taken the tests to provide an estimate of a person’s ethnic background. For example, the pattern of SNPs might indicate that a person's ancestry is approximately 50 percent African, 25 percent European, 20 percent Asian, and 5 percent unknown. Genealogists use this type of test because Y chromosome and mitochondrial DNA test results, which represent only single ancestral lines, do not capture the overall ethnic background of an individual.

Genetic ancestry testing has a number of limitations. Test providers compare individuals’ test results to different databases of previous tests, so ethnicity estimates may not be consistent from one provider to another. Also, because most human populations have migrated many times throughout their history and mixed with nearby groups, ethnicity estimates based on genetic testing may differ from an individual's expectations. In ethnic groups with a smaller range of genetic variation due to the group's size and history, most members share many SNPs, and it may be difficult to distinguish people who have a relatively recent common ancestor, such as fourth cousins, from the group as a whole.

Genetic ancestry testing is offered by several companies and organizations. Most companies provide online forums and other services to allow people who have been tested to share and discuss their results with others, which may allow them to discover previously unknown relationships. On a larger scale, combined genetic ancestry test results from many people can be used by scientists to explore the history of populations as they arose, migrated, and mixed with other groups.

For more information about genetic ancestry testing:

The University of Utah provides video tutorials (https://learn.genetics.utah.edu/content/basics/molgen/) on molecular genealogy.

The International Society of Genetic Genealogy (https://isogg.org/) promotes the use of DNA testing in genealogy.

The American Society of Human Genetics (ASHG) developed a position paper on ancestry testing (http://www.ashg.org/pdf/ASHGAncestryTestingStatement_FINAL.pdf).

What are the benefits and risks of direct-to-consumer genetic testing?

Direct-to-consumer genetic testing has both benefits and limitations, although they are somewhat different than those of genetic testing ordered by a healthcare provider.

Benefits

- Direct-to-consumer genetic testing promotes awareness of genetic diseases.
- It provides personalized information about your health, disease risk, and other traits.
- It may help you be more proactive about your health.
- It does not require approval from a healthcare provider or health insurance company.
- It is often less expensive than genetic testing obtained through a healthcare provider.
- DNA sample collection is usually simple and noninvasive, and results are available quickly.
- Your data is added to a large database that can be used to further medical research. Depending on the company, the database may represent up to several million participants.

Risks and limitations

- Tests may not be available for the health conditions or traits that interest you.
- This type of testing cannot tell definitively whether you will or will not get a particular disease.
- Unexpected information that you receive about your health, family relationships, or ancestry may be stressful or upsetting.
- People may make important decisions about disease treatment or prevention based on inaccurate, incomplete, or misunderstood information from their test results.
- There is currently little oversight or regulation of testing companies.
- Unproven or invalid tests can be misleading. There may not be enough scientific evidence to link a particular genetic variation with a given disease or trait.
• Genetic privacy may be compromised if testing companies use your genetic information in an unauthorized way or if your data is stolen.
• The results of genetic testing may impact your ability to obtain life, disability, or long-term care insurance.

Direct-to-consumer genetic testing provides only partial information about your health. Other genetic and environmental factors, lifestyle choices, and family medical history also affect the likelihood of developing many disorders. These factors would be discussed during a consultation with a doctor or genetic counselor, but in many cases they are not addressed when using at-home genetic tests.

Learn more about the pros and cons of direct-to-consumer genetic testing:

American College of Medical Genetics: Position statement on direct-to-consumer genetic testing (https://www.acmg.net/docs/ACMG%20Revised%20DTC%20Statement%20AOP%20Dec%202015.pdf)

How do I choose a direct-to-consumer genetic testing company?

If you are interested in direct-to-consumer genetic testing, do some research into the companies that offer these services. Questions that can help you assess the quality and credibility of a testing company include:

• Does the company’s website appear professional? Does the company provide adequate information about the services it offers, including sample reports, pricing, and methodology?

• Does the company have experienced genetics professionals, such as medical geneticists and genetic counselors, on its staff? Does the company offer consultation with a genetics professional if you have questions about your test results?

• Does the company explain which genetic variations it is testing for? Does it include the scientific evidence linking those variations with a particular disease or trait? Are the limitations of the test and the interpretation of results made clear?

• What kind of laboratory does the genetic testing, and is the laboratory inside or outside the United States? Is the laboratory certified or accredited? For example, does the laboratory meet U.S. federal regulatory standards on page 202 called the Clinical Laboratory Improvement Amendments (CLIA)? Is the test approved by the U.S. Food and Drug Administration (FDA)?

• Does the company indicate how it will protect your privacy and keep your genetic data safe? Does that information include both current privacy practices and what may happen to your genetic data in the future?

• Does the company indicate who will have access to your data and how it may be shared? Does it share or sell their customers’ genetic data for research or other purposes? For some companies, much of their profit comes from selling large amounts of participant data for research and drug development, not from selling individual test kits.

Be sure to read and understand the “fine print” on the company’s website before purchasing a direct-to-consumer genetic test. This detailed information, which is often called the “terms of use” or “terms of service,” is a legally binding agreement between you and the company providing the testing. It spells out what is included and excluded in the service and details your rights and the company’s
responsibilities. If you still have questions, contact the company to get more information before you make a decision about testing.

More information about factors to consider when choosing a direct-to-consumer genetic testing company:

- Genetic Alliance: Genetic Testing (http://www.geneticalliance.org/advocacy/policyissues/genetictesting) (including policy issues and regulations)

How is direct-to-consumer genetic testing done?

For most types of direct-to-consumer genetic testing, the process involves:

1. **Purchasing a test**

 Test kits can be purchased online (and are shipped to your home) or at a store. The price of some test kits includes the analysis and interpretation, while in other cases this information is purchased separately.

2. **Collecting the sample**

 Collection of the DNA sample usually involves spitting saliva into a tube or swabbing the inside of your cheek. You then mail the sample as directed by the company. In some cases, you will need to visit a health clinic to have blood drawn.

3. **Analyzing the sample**

 A laboratory will analyze the sample to look for particular genetic variations. The variations included in the test depend on the purpose of the test.

4. **Receiving results**

 In most cases, you will be able to access your results on a secure website. Other test companies share results in the mail or over the phone. The results usually include interpretation of what specific genetic variations may mean for your health or ancestry. In some cases, a genetic counselor or other healthcare provider is available to explain the results and answer questions.

 The test kit will include step-by-step instructions, so be sure you understand them before you begin. If you have questions, contact the company before collecting your sample.

Learn more about the direct-to-consumer genetic testing process:

How much does direct-to-consumer genetic testing cost, and is it covered by health insurance?

The price of direct-to-consumer genetic testing ranges from under a hundred dollars to several thousand dollars. The cost depends on how many genetic variations are analyzed (and it will cost more if whole genome or whole exome sequencing is used), how extensive the interpretation of results is, and whether other products, programs, or services are included. Some companies charge separately for the sample collection kit and the analysis, while others offer the sample collection and analysis as part of a package. In some cases, consultation with a healthcare professional (such as a genetic counselor) is included in the cost of testing; in others, it can be added for an additional fee. Before you proceed with testing, make sure you know the total cost for all of the results, support, and other services you expect to receive.

Direct-to-consumer genetic tests, even tests that provide information about health and disease risk, are not covered by most health insurance plans. Because this testing is done without a referral from a healthcare provider and is not considered “diagnostic” (that is, it cannot be used to diagnose any disease or condition), health insurance companies generally will not pay for it. However, if you share your results with your healthcare provider and he or she recommends additional testing or management, that follow-up care may be covered.

Direct-to-consumer genetic tests that are unrelated (or indirectly related) to health, such as ancestry testing and paternity testing, are typically not covered by health insurance plans.

Learn more about the costs of direct-to-consumer genetic testing:

Genetics Home Reference: What is the cost of genetic testing, and how long does it take to get the results? on page 206

Genetics Home Reference: Will health insurance cover the costs of genetic testing? on page 207
What do the results of direct-to-consumer genetic testing mean?

Direct-to-consumer genetic testing can provide interesting information about your health, traits, and ancestry. However, the results may not be as clear-cut as many people assume. Companies that provide these tests often tell their customers that the results are for information, education, and research purposes only—they are not meant to diagnose, prevent, or treat any disease or health condition. It is useful to keep this distinction in mind when interpreting your own test results.

Health and disease risk

The results of these genetic tests provide information about your chance of developing certain diseases and the likelihood that you have particular traits (such as dimples or lactose intolerance). These results are usually based on an analysis of one or more genetic variations that are known or suspected to be associated with the disease or trait.

The results of tests to predict disease risk do not provide a “yes or no” answer about whether a person will develop a given disease. Other factors, including genetic variations that were not tested, environmental factors, and lifestyle choices (such as diet and exercise) also contribute to disease risk in ways that may not be fully understood. Therefore, a result showing an increased risk does not mean you will definitely develop the disease, and a result showing a reduced risk does not mean you will never develop the disease.

Ancestry

The results of these tests give clues about major geographic areas that are your family’s origins. These results are calculated on the basis of genetic variations that are more common in people from certain areas of the world than in others. You may also choose to receive information about individuals who are likely related to you. (These individuals have also undergone testing, and the predictions are based on similarities among DNA sequences.)

Sometimes the results of ancestry testing are unexpected or inconsistent with what a person understands about his or her family history. These tests can uncover previously unknown information about biological relationships among people (such as paternity). People who are closely related, such as siblings, may receive slightly different information about their ancestry because results are limited by the number and diversity of people who have submitted DNA samples to a given direct-to-consumer genetic testing company. It is important
to be aware that receiving unexpected or ambiguous information about your background or family is a potential risk with this type of testing.

Lifestyle

In most cases, direct-to-consumer lifestyle tests assess genetic variations related to very specific traits, such as how your body converts the nutrients from food into energy (metabolism), day/night (circadian) rhythm, or the senses of taste and smell. The company may recommend specific diet or fitness programs, dietary supplements, skincare products, or other products and services on the basis of your results. However, in most cases the link between a given genetic variation and a complex trait like weight, athletic performance, or sleep is indirect or unknown. Therefore the results of these tests can be challenging to interpret, and it can be difficult to predict whether a recommended product or service will be helpful to you.

If you have questions about the meaning of your test results, professional support (such as guidance from a genetic counselor) may be available from the company that provided the test. You can also share questions about your results with your own healthcare provider. Talk to your doctor before making any major changes in managing your health, diet, or fitness after you receive results of a direct-to-consumer genetic test.

Read more about the issues raised by direct-to-consumer genetic test results:

Stanford at the Tech: Going From DNA to Health Risk (https://genetics.thetech.org/ask-a-geneticist/how-gwas-works)

What can raw data from a direct-to-consumer genetic test tell me?

In addition to providing various reports and analyses based on your genetics, some direct-to-consumer genetic testing companies make your raw data available to download. The raw data are your genotype—the particular A’s, C’s, T’s, and G’s on page 10 of your DNA—extracted from the sample you provided. These data are unique to you. Most companies caution that the raw data are only for research or education and are not suitable for medical purposes, such as diagnosing a disease.

It is challenging to interpret raw genotype data on your own. To help with this, several online “third-party interpretation” services offer analysis and interpretation of the raw data collected by another company. Third-party interpretation services can potentially use your genetic data to provide you with more information about your disease risk, traits, and ancestry. However, these services also have some risks and limitations:

• Relatively often, test results include false positives, which means that the service indicates an increased risk of disease when your risk is not actually higher than that of the general population. False positives and other errors can cause stress and anxiety.
• The results may include unexpected or upsetting information about your disease risk or family relationships without any context or guidance.
• The raw data, once you download it and send it by e-mail or store it on your computer, is no longer protected by the original service’s privacy measures.
• There is little regulation of third-party interpretation services.

As with any kind of genetic testing, it is important to assess the credibility of any company you are considering and find out how it protects your privacy before submitting your genetic information. Your healthcare provider can help you understand your results and determine whether any follow-up testing would be useful.
Learn more about the interpretation of raw genetic data:

Can a direct-to-consumer genetic test tell me whether I will develop cancer?

While a direct-to-consumer genetic test can estimate your risk, it cannot tell you for certain whether you will or will not develop certain forms of cancer. Many other factors, including gender, age, diet and exercise, ethnic background, a history of previous cancer, hormonal and reproductive factors, and family history also contribute to a person’s overall cancer risk.

The U.S. Food and Drug Administration (FDA) has allowed at least one direct-to-consumer genetic testing company, 23andMe, to offer a test for cancer risk. The test looks for three specific variations in two genes: BRCA1 and BRCA2. These variations are associated with an increased risk of breast cancer, ovarian cancer, and potentially other forms of cancer in people of Ashkenazi (eastern European) Jewish ancestry.

Researchers estimate that 5 to 10 percent of all cancers run in families. Some of these cancers are associated with inherited mutations in particular genes, such as BRCA1 or BRCA2. More than 1,000 variations in each of these genes have been associated with an increased risk of cancer. However, the FDA-approved direct-to-consumer genetic test analyzes only three of these variations. The variations included in the test are much more common in people of Ashkenazi Jewish background than in people of other ethnicities, so if you are not of Ashkenazi Jewish heritage, the results may not be useful to you.

Because the variants included in the test are uncommon, most people will have a negative result. A negative result does not mean that you will never get cancer. Similarly, a positive result (one that indicates a cancer-related genetic variation) does not mean that you will definitely develop cancer.

Direct-to-consumer genetic testing for cancer risk can be stressful and anxiety-producing. Health professional organizations and patient advocacy groups strongly recommend that people considering genetic testing for BRCA1 and BRCA2 variations, including those included in direct-to-consumer genetic tests, talk with a genetic counselor on page 183 about the reasons they want to undergo testing and what the results could mean for their health.

Learn more about direct-to-consumer genetic testing for cancer risk:

U.S. Food and Drug Administration: FDA Authorizes, with Special Controls, Direct-to-Consumer Test that Reports Three Mutations in the BRCA Breast Cancer Genes (https://www.fda.gov/news-events/press-announcements/fda-
authorizes-special-controls-direct-consumer-test-reports-three-mutations-brca-breast-cancer)

Can a direct-to-consumer genetic test tell me whether I will develop Alzheimer disease?

While a direct-to-consumer genetic test can estimate your risk, it cannot tell you for certain whether you will or will not develop Alzheimer disease. Variations in multiple genes, together with lifestyle factors such as diet and exercise, all play a role in determining a person’s risk.

The U.S. Food and Drug Administration (FDA) has allowed at least one direct-to-consumer genetic testing company, 23andMe, to offer a test for Alzheimer disease risk. The test analyzes a gene called APOE. Certain variations in this gene are associated with the likelihood of developing late-onset Alzheimer disease (the most common form of the condition, which begins after age 65). Specifically, the test allows you to find out how many copies (zero, one, or two) you have of a version of the gene called the e4 allele. People who have zero copies of the e4 allele have the same risk of late-onset Alzheimer disease as the general population. The risk increases with the number of copies of the e4 allele, so people with one copy have an increased chance of developing the disease, and people with two copies have an even greater risk. However, many people who have one or two copies of the e4 allele never develop Alzheimer disease, and many people with no copies of this allele ultimately get the disease.

Variations in the APOE gene are among many factors that influence a person’s overall risk of developing Alzheimer disease. Variations in many other genes, which are not reported in the FDA-approved direct-to-consumer genetic test, also contribute to disease risk. Additionally, there are risk factors for Alzheimer disease that have yet to be discovered. Therefore the APOE e4 allele represents only one piece of your overall Alzheimer disease risk.

Currently, there are no effective approaches for preventing Alzheimer disease, and while the disease can be treated, it has no cure. For these reasons, the National Institute on Aging recommends against genetic testing for Alzheimer disease except in a research setting on page 213 (such as a clinical trial). Patient advocacy groups strongly recommend that people considering genetic testing for Alzheimer disease, including direct-to-consumer genetic testing, talk with a genetic counselor on page 183 about the reasons they want to undergo testing and how they would cope with the results.

Learn more about direct-to-consumer genetic testing for Alzheimer disease:

U.S. Food and Drug Administration: FDA Allows Marketing of First Direct-to-Consumer Tests that Provide Genetic Risk Information for Certain Conditions
Direct-to-Consumer Genetic Testing

National Institute on Aging: Alzheimer’s Disease Genetics Fact Sheet
(https://www.nia.nih.gov/health/alzheimers-disease-genetics-fact-sheet#testing)

Alzheimer’s Association: Genetic Testing

Alzheimer’s Society (UK): Genetics of Dementia: Genetic Testing
What does it mean to have Neanderthal or Denisovan DNA?

Several direct-to-consumer genetic testing on page 227 companies report how much DNA a person has inherited from prehistoric humans, such as Neanderthals and Denisovans. This information is generally reported as a percentage that suggests how much DNA an individual has inherited from these ancestors. The percentage of Neanderthal DNA in modern humans is zero or close to zero in people from African populations, and is about 1 to 2 percent in people of European or Asian background. The percentage of Denisovan DNA is highest in the Melanesian population (4 to 6 percent), lower in other Southeast Asian and Pacific Islander populations, and very low or undetectable elsewhere in the world.

Neanderthals were very early (archaic) humans who lived in Europe and Western Asia from about 400,000 years ago until they became extinct about 40,000 years ago. Denisovans are another population of early humans who lived in Asia and were distantly related to Neanderthals. (Much less is known about the Denisovans because scientists have uncovered fewer fossils of these ancient people.) The precise way that modern humans, Neanderthals, and Denisovans are related is still under study. However, research has shown that modern humans overlapped with Neanderthal and Denisovan populations for a period, and that they had children together (interbred). As a result, many people living today have a small amount of genetic material from these distant ancestors.

Scientists have sequenced Neanderthal and Denisovan genomes from fossils discovered in Europe and Asia. This genetic information is helping researchers learn more about these early humans. Determining which areas of the genome are shared with archaic humans, and which areas are different, will also help researchers find out what differentiates modern humans from our closest extinct relatives.

In addition to the percentage of Neanderthal or Denisovan DNA, direct to-consumer testing reports may include information about a few genetic variants inherited from these ancestors that influence specific traits. Studies have suggested that certain genetic variations inherited from archaic humans may play roles in hair texture, height, sensitivity of the sense of smell, immune responses, adaptations to high altitude, and other characteristics in modern humans. These variations may also influence the risk of developing certain diseases. However, the significance of Neanderthal or Denisovan genetic variants on disease risk is still an area of active study, and most direct-to-consumer test results currently do not include them.
While knowing how much DNA a person has in common with his or her Neanderthal or Denisovan ancestors may be interesting, these data do not provide practical information about a person’s current health or chances of developing particular diseases. Having more or less DNA in common with archaic humans says nothing about how “evolved” a person is, nor does it give any indication of strength or intelligence. For now, knowing which specific genetic variants a person inherited from Neanderthal or Denisovan ancestors provides only limited information about a few physical traits.

Scientific journal articles for further reading

Learn more about the genetics of Neanderthals and Denisovans:

The Smithsonian's Human Origins Program provides information about the genetics of archaic humans and its relevance to modern humans:

- Homo neanderthalensis (http://humanorigins.si.edu/evidence/human-fossils/species/homo-neanderthalensis)
- Ancient DNA and Neanderthals (http://humanorigins.si.edu/evidence/genes/ancient-dna-and-neanderthals)
• Interbreeding (http://humanorigins.si.edu/evidence/genetics/ancient-dna-and-neanderthals/interbreeding)
• DNA: Genotypes and Phenotypes (http://humanorigins.si.edu/evidence/genetics/ancient-dna-and-neanderthals/dna-genotypes-and-phenotypes)

A news release about the complete sequencing of the Neanderthal genome (https://www.genome.gov/27539119/2010-release-complete-neanderthal-genome-sequenced) is available from the National Human Genome Research Institute.

The Max Planck Institute for Evolutionary Anthropology provides information and data about the Denisovan genome (https://www.eva.mpg.de/genetics/genome-projects/denisova/index.html).
How do direct-to-consumer genetic testing companies protect their customers’ privacy?

A person’s genetic data represent personal, private health information. If you are considering direct-to-consumer genetic testing, it is important to know how the testing company will protect your information. In particular, you should know how the company will handle your sample (for example, saliva), how it plans to safeguard your data, and whether and how your data will be used for secondary purposes (such as research or advertising).

Most direct-to-consumer genetic testing companies provide detailed information on their websites about their privacy and security practices. This information may be included in a “privacy policy,” “privacy statement,” or “privacy center.” Be sure to read, understand, and agree with this information before you start the testing process. If you have questions, contact the company to get more information.

Questions that can help you assess a company’s privacy practices include:

- What does the company do with your sample once it has completed the analysis? Will the sample be stored, shared, sold, or destroyed?
- Once you take the test, who owns your genetic data?
- How does the company safeguard your genetic data and other personal information that you provide? Is it stored in a database that is protected from unauthorized access? What happens if the database is hacked or otherwise compromised?
- Can you delete your results from the company’s database if you wish?
- Does the company use your information for internal research, advertising, or other secondary purposes?
- Will the company share your genetic data or sell it to pharmaceutical or biotechnology companies, academic institutions, or nonprofit organizations? If so, will the shared data include other information that could identify you (such as your name or date of birth)? For what purposes will your data be used? Will you be informed when your data are shared or sold?
- If you do not want your genetic data shared, sold, or used for research, can you opt out? What happens if you agree to share your information but want to opt out later?
• Will you be notified in the future if the company changes its privacy policies?
• What would happen to your sample and your genetic information if the company is sold or goes out of business?

In some cases, even if a testing service promises not to share your genetic information with others, they may be required by law to disclose the information to authorities in response to a warrant, court order, or other legal requirement. Many companies now provide explicit information about whether and how your genetic data may be accessed by law enforcement officials. If you upload your data to public databases, such as those administered by some third-party interpretation services on page 242, that information will be available to law enforcement. Be sure to read and understand how your data may be accessed by authorities before you submit your sample. Because everyone shares genetic similarities with their relatives, it may have implications not only for your own privacy but for that of people who are related to you.

Scientific journal articles for further reading

Learn more about privacy issues related to direct-to-consumer genetic testing:

U.S. Federal Trade Commission: DNA Test Kits: Consider the Privacy Implications

Citigen: What Happens to Your Genetic Data When You Take a Commercial DNA Ancestry Test?

Moffitt Cancer Center: Do DNA Test Kits Put Your Privacy on the Line?

Harvard Law Bill of Health Blog: Transparency and Direct-to-Consumer Genetic Testing Companies

The Hastings Center: Addressing Questions About DTC Genetic Tests and Privacy

Personal Genetics Education Project: Genetics, Law Enforcement, and Crime
Can the results of direct-to-consumer genetic testing affect my ability to get insurance?

Passed in 2008, a federal law called the Genetic Information Nondiscrimination Act (GINA) on page 210 made it illegal for health insurance providers in the United States to use genetic information in decisions about a person's health insurance eligibility or coverage. This means that health insurance companies cannot use the results of a direct-to-consumer genetic test (or any other genetic test) to deny coverage or require you to pay higher premiums. However, GINA does not apply when an employer has fewer than 15 employees, and it does not cover people in the U.S. military or those receiving health benefits through the Veterans Health Administration or Indian Health Service.

GINA does not apply to other forms of insurance, such as disability insurance, long-term care insurance, or life insurance. Companies that offer these policies have the right to request medical information, including the results of any genetic testing, when making decisions about coverage and rates. Some of these companies request information about genetic testing as part of their application process, but others do not. It is unclear whether genetic information, including the results of direct-to-consumer genetic testing, will become a standard part of the risk assessment that insurance companies undertake when making coverage decisions.

You should weigh the possible benefits and risks of direct-to-consumer genetic testing, including potential impacts on insurance eligibility and coverage, before you start the testing process.

Learn more about the implications of direct-to-consumer genetic testing in insurance coverage:

- Genetic Alliance: Genetic Discrimination (http://www.geneticalliance.org/advocacy/policyissues/geneticdiscrimination)
- Wharton Public Policy Podcast: Why Genetic Testing Is a 'Perfect Storm' for Insurers (https://knowledge.wharton.upenn.edu/article/why-genetic-testing-is-a-perfect-storm-for-insurers/)
Where can I read more about the diseases and traits covered in my direct-to-consumer genetic testing report?

Learn more from Genetics Home Reference about the health conditions and traits included in your report. Each plain-language summary provides information about the condition’s major features, frequency, causes, and inheritance. You will also find links to other reputable sources of online health information.

Health conditions

BRCA1 or *BRCA2*-related breast cancer and ovarian cancer

Age-related macular degeneration

Alpha-1 antitrypsin deficiency

Celiac disease

Glucose-6-phosphate dehydrogenase deficiency, also called *G6PD* deficiency

Hereditary hemochromatosis

Hereditary thrombophilia: prothrombin thrombophilia and factor V Leiden thrombophilia

Alzheimer disease

Parkinson disease

Wellness

Lactose intolerance

Traits

Cheek dimples on page 168

Eye color on page 148

Hair texture on page 159

Hair color on page 161 (light or dark hair)

Carrier status

Autosomal recessive spastic ataxia of Charlevoix-Saguenay, also called ARSACS

Andermann syndrome, also called agenesis of the corpus callosum with peripheral neuropathy
Polycystic kidney disease
Beta thalassemia
Bloom syndrome
Canavan disease
PMM2-congenital disorder of glycosylation, also called PMM2-CDG
Cystic fibrosis
D-bifunctional protein deficiency
Dihydrolipoamide dehydrogenase deficiency
Familial dysautonomia
Congenital hyperinsulinism, also called familial hyperinsulinism
Fanconi anemia
GRACILE syndrome
Gaucher disease
Glycogen storage disease type I
Hereditary fructose intolerance
Junctional epidermolysis bullosa
Leigh syndrome
Limb-girdle muscular dystrophy
Medium-chain acyl-CoA dehydrogenase deficiency, also called MCAD deficiency
Maple syrup urine disease
Mucolipidosis type IV
CLN5 disease, also called neuronal ceroid lipofuscinosis (CLN5-related)
CLN1 disease, also called neuronal ceroid lipofuscinosis (PPT1-related)
Niemann-Pick disease
Nijmegen breakage syndrome
Nonsyndromic hearing loss
Pendred syndrome
Phenylketonuria
Primary hyperoxaluria
Rhizomelic chondrodysplasia punctata
Sialic acid storage disease, including Salla disease
Sickle cell disease, also called sickle cell anemia
Sjögren-Larsson syndrome
Tay-Sachs disease
Tyrosinemia
Usher syndrome
Zellweger spectrum disorder, also called Zellweger syndrome spectrum

For more help understanding your test results:
How can I find a genetics professional in my area? on page 183
What happens during a genetic consultation? on page 181
Newborn Screening

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is newborn screening?</td>
<td>259</td>
</tr>
<tr>
<td>How is newborn screening done?</td>
<td>260</td>
</tr>
<tr>
<td>What disorders are included in newborn screening?</td>
<td>262</td>
</tr>
<tr>
<td>Who pays for newborn screening?</td>
<td>263</td>
</tr>
<tr>
<td>What happens if a newborn screening test comes back negative?</td>
<td>264</td>
</tr>
<tr>
<td>What happens if a newborn screening test comes back positive?</td>
<td>265</td>
</tr>
<tr>
<td>What is newborn genomic sequencing?</td>
<td>267</td>
</tr>
</tbody>
</table>
What is newborn screening?

Newborn screening is the practice of testing all babies in their first days of life for certain disorders and conditions that can hinder their normal development. This testing is required in every state and is typically performed before the baby leaves the hospital. The conditions included in newborn screening can cause serious health problems starting in infancy or childhood. Early detection and treatment can help prevent intellectual and physical disabilities and life-threatening illnesses.

To learn more about newborn screening:

MedlinePlus from the National Library of Medicine can point you to resources related to newborn screening (https://medlineplus.gov/newbornscreening.html).

The following websites and organizations also provide information about newborn screening:

- National Newborn Screening & Global Resource Center (http://genes-r-us.uthscsa.edu/)
- Baby's First Test (https://www.babysfirsttest.org/)
- Save Babies Through Screening Foundation (http://www.savebabies.org/)
How is newborn screening done?

Newborn screening usually begins with a blood test 24 to 48 hours after a baby is born, while he or she is still in the hospital. In some states, a second blood test is performed at a check-up appointment with the baby's pediatrician when the baby is 1 to 2 weeks old. Newborn screening is part of standard care; parents do not need to request to have the test done.

The test is performed by pricking the baby's heel to collect a few drops of blood. There are very few risks associated with this procedure, and it involves minimal discomfort to the baby. The blood is placed on a special type of paper and sent to a laboratory for analysis. Within 2 to 3 weeks, the test results are sent to the baby's doctor's office or clinic.

If a baby is born outside a hospital (for example, at home or in a birthing center), a doula or midwife may collect the blood sample needed for the newborn screening test. Otherwise, the required testing can be performed at the baby's doctor's office or at a hospital.

In addition to the blood test, most states also screen newborns for hearing loss and critical congenital heart disease. These tests are also done shortly after birth. The hearing test uses earphones and sensors to determine whether the baby's inner ear or brain respond to sound. The test for critical congenital heart disease, called pulse oximetry, uses a sensor on the skin to measure how much oxygen is in the blood. Low oxygen levels suggest that an infant may have heart problems. The hearing and pulse oximetry tests are painless and can be done while the baby is sleeping.

To learn more about how newborn screening tests are performed:

Additional information about newborn screening procedures (https://www.nichd.nih.gov/health/topics/newborn/conditioninfo/how-done) is available from the Eunice Kennedy Shriver National Institute of Child Health and Human Development at NIH.

Baby’s First Test provides more details about newborn screening procedures (https://www.babysfirsttest.org/newborn-screening/screening-procedures) overall, as well as the screening tests for hearing loss (https://www.babysfirsttest.org/newborn-screening/conditions/hearing-loss) and critical congenital heart disease (https://www.babysfirsttest.org/newborn-screening/conditions/critical-congenital-heart-disease-cchd) in particular.
These resources offer specific information about the tests used to screen for hearing loss:

- It's Important to Have Your Baby's Hearing Screened (https://www.nidcd.nih.gov/health/your-babys-hearing-screening) from the National Institute on Deafness and Other Communication Disorders at NIH
- Purpose of Newborn Hearing Screening (https://www.healthychildren.org/English/ages-stages/baby/pages/Purpose-of-Newborn-Hearing-Screening.aspx) from Healthychildren.org, a service of the American Academy of Pediatrics
What disorders are included in newborn screening?

The disorders included in newborn screening vary from state to state. Most states test for all of the conditions specified by the Health Resources and Services Administration (HRSA) in their Recommended Uniform Screening Panel. These conditions include phenylketonuria (PKU), cystic fibrosis, sickle cell disease, critical congenital heart disease, hearing loss, and others. Some states test for additional disorders that are not part of the HRSA panel.

Most of the conditions included in newborn screening can cause serious health problems if treatment is not started shortly after birth. Prompt identification and management of these conditions may be able to prevent life-threatening complications.

Parents can ask their baby's healthcare provider about expanded (supplemental) screening if they live in a state that screens for a smaller number of disorders. Supplemental screening is typically done by commercial laboratories. It is separate from the testing done by the state, although it often uses a blood sample drawn at the same time.

To find out more about the disorders included in newborn screening:

These resources list the disorders included in each state's newborn screening panel:

- Baby's First Test: Conditions Screened by State (https://www.babysfirsttest.org/newborn-screening/states)
- National Newborn Screening & Global Resource Center: Newborn Screening by State (http://genes-r-us.uthscsa.edu/resources/consumer/statemap.htm)

Additional information about supplemental newborn screening is available:

- Baby's First Test: What is additional screening? (https://www.babysfirsttest.org/newborn-screening/conditions#2)
- National Newborn Screening & Global Resource Center: Commercial and Non-Profit Organizations Offering Expanded Newborn Screening Tests (http://genes-r-us.uthscsa.edu/resources/newborn/commercial.htm)
Who pays for newborn screening?

Newborn screening is performed on every infant regardless of the parents' health insurance status or ability to pay. The fees for newborn screening vary by state, from less than $15 to about $150. Some states do not charge a fee for this testing. When there is a fee, it is often covered by private health insurance plans. This testing is also covered under the Children's Health Insurance Program (CHIP) and Medicaid for those who are eligible.

If a parent chooses to have supplemental screening done through a private laboratory, that testing is not covered under the fees charged by each state for newborn screening. The costs of supplemental testing are charged by the laboratory that performs the tests. Parents should check with their health insurer to find out whether supplemental newborn screening is a covered service.

If a newborn screening test comes back positive (abnormal), further testing needs to be done to determine whether the baby has a particular condition. This additional testing involves separate costs that may be covered by health insurance plans.

To find out more about the costs of newborn screening:

The National Newborn Screening & Global Resource Center lists the cost of newborn screening in each state (http://genes-r-us.uthscsa.edu/resources/consumer/statemap.htm).

Baby's First Test has state-specific information about who pays for newborn screening. Choose your state (https://www.babysfirsttest.org/newborn-screening/states) to find out more.
What happens if a newborn screening test comes back negative?

Within 2 to 3 weeks after newborn screening tests are performed, results are sent to the baby's doctor's office or clinic. A negative result means that all of the tests are in the normal range, and they do not indicate any increased risk. Other words for a negative test result are "passing," "in-range," or "normal."

In most cases, families are not notified of negative results. Parents can contact their baby's healthcare provider if they wish to confirm that the results were negative. Usually no follow-up testing is necessary.

Rarely, the results of a newborn screening test can be a false negative. "False negative" means that a disease was missed by the screen; the test results came back negative, but the child actually has the disease. Possible reasons for a false negative result include laboratory errors, such as mixing up samples, and doing the test too early. Because false negatives are possible, further testing should be done if a baby has a family history of a particular disease or shows signs and symptoms, regardless of the newborn screening result.

Learn more about negative newborn screening test results:

Baby’s First Test provides more information about test results and what they mean (https://www.babysfirsttest.org/newborn-screening/responding-to-results).

The Minnesota Department of Health provides details about interpreting the results of several types of newborn screening tests (https://www.health.state.mn.us/people/newbornscreening/families/screeningresults.html).
What happens if a newborn screening test comes back positive?

Within 2 to 3 weeks after newborn screening tests are performed, results are sent to the baby’s doctor’s office or clinic. A positive result means that at least one of the tests came back outside the normal range. Other words for a positive result are "failing," "out-of-range," or "abnormal."

The healthcare provider will notify parents of a positive test result. A positive result does not mean that a baby definitely has a disease, but it indicates that further testing (called diagnostic testing on page 187, because it is used to diagnose a disease) should be performed as soon as possible. If the baby does have the disease, quick follow-up testing can allow treatment or management on page 190, such as a special diet, to begin very soon after birth.

Often when there is a positive screening test result, follow-up diagnostic testing shows that the baby does not have the disease. In these cases, the results of the newborn screening test are described as "false positive," meaning that the test suggested an increased risk of the disease when the baby does not actually have the disease. False positive test results occur because screening tests are designed to identify as many babies affected with treatable diseases as possible. Because it is critical not to miss affected babies, some babies who are unaffected also have a positive screening result.

Occasionally, the results of a newborn screening test are reported as "borderline." These results are not quite normal, but they are not clearly abnormal, either. In these cases, the baby’s healthcare provider may repeat the test.

Learn more about positive newborn screening test results:

Baby's First Test provides more information about test results and what they mean (https://www.babysfirsttest.org/newborn-screening/responding-to-results).

The Minnesota Department of Health provides details about interpreting the results of several types of newborn screening tests (https://www.health.state.mn.us/people/newbornscreening/families/screeningresults.html) and a fact sheet about borderline test results (https://www.health.state.mn.us/people/newbornscreening/families/familyfsnewborderline.pdf).

Save Babies Through Screening offers more information about positive test results and follow-up testing (http://www.savebabies.org/ips_faqs.html).
A description of false positive results is available from Baby's First Test (https://www.babysfirsttest.org/newborn-screening/false-positives).
What is newborn genomic sequencing?

Newborn genomic sequencing is an approach currently under study to collect and analyze large amounts of DNA sequence data in the newborn period. Genomic sequencing, a technology used to determine the order of DNA building blocks (nucleotides) in an individual's genetic code, is already available to test for genetic disorders in children and adults. Researchers have proposed using this technology to screen all newborns for health conditions they may have or be at risk of developing in childhood.

Newborn genomic sequencing would not replace standard newborn screening, which tests for a recommended 34 health conditions (although the exact number varies by state). Like current newborn screening, newborn genomic sequencing would allow doctors to identify health conditions very early in life. This technique would expand significantly the number and scope of health conditions that could be diagnosed soon after birth, potentially allowing doctors to start treatment and other follow-up as soon as possible.

As interest in newborn genomic sequencing grows, researchers and ethicists have identified possible ethical, social, and legal issues that need to be considered before the technology is widely adopted. These include the following considerations:

- Some genetic changes will have implications for the health of not only the infant, but of his or her parents and other family members.
- The interpretation of genomic data is constantly evolving, and right now it is unclear whether some changes in the genome are relevant to a person's health or not.
- While some genetic changes have immediate significance for an infant's health, other changes only influence the risk of developing health problems later in life. Infants are unable to provide informed consent, which is generally required when testing for adult-onset diseases.
- Newborn genomic screening raises issues of privacy and potential genetic discrimination if genomic data becomes part of a baby's medical record.

Newborn genomic sequencing may also have other risks and limitations that have not yet been recognized. All of these issues are under study as newborn genomic sequencing becomes increasingly feasible on a large scale. The NIH has sponsored several research studies to explore potential benefits, limitations, and ethical concerns in their Newborn Sequencing in Genomic Medicine and...
Public Health (NSIGHT) program. The NSIGHT studies are funded through August 2018.

Scientific journal articles for further reading

Learn more about newborn genomic sequencing and the NSIGHT program:

NSIGHT clinical trials:

- Genomic Sequencing for Childhood Risk and Newborn Illness (BabySeq) (Study overview (https://www.genomes2people.org/research/babyseq/)) (ClinicalTrials.gov (https://clinicaltrials.gov/ct2/show/NCT02422511))
- Clinical and Social Implications of 2-Day Genome Results in Acutely III Newborns (ClinicalTrials.gov (https://clinicaltrials.gov/ct2/show/NCT02225522))
- Perinatal Precision Medicine (NSIGHT2) (ClinicalTrials.gov (https://clinicaltrials.gov/ct2/show/NCT03211039))
Gene Therapy

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is gene therapy?</td>
<td>271</td>
</tr>
<tr>
<td>How does gene therapy work?</td>
<td>272</td>
</tr>
<tr>
<td>Is gene therapy safe?</td>
<td>275</td>
</tr>
<tr>
<td>What are the ethical issues surrounding gene therapy?</td>
<td>276</td>
</tr>
<tr>
<td>Is gene therapy available to treat my disorder?</td>
<td>277</td>
</tr>
</tbody>
</table>
What is gene therapy?

Gene therapy is an experimental technique that uses genes to treat or prevent disease. In the future, this technique may allow doctors to treat a disorder by inserting a gene into a patient’s cells instead of using drugs or surgery. Researchers are testing several approaches to gene therapy, including:

- Replacing a mutated gene that causes disease with a healthy copy of the gene.
- Inactivating, or “knocking out,” a mutated gene that is functioning improperly.
- Introducing a new gene into the body to help fight a disease.

Although gene therapy is a promising treatment option for a number of diseases (including inherited disorders, some types of cancer, and certain viral infections), the technique remains risky and is still under study to make sure that it will be safe and effective. Gene therapy is currently being tested only for diseases that have no other cures.

For general information about gene therapy:

MedlinePlus from the National Library of Medicine offers a list of links to information about genes and gene therapy (https://medlineplus.gov/genesandgenetherapy.html).

The Genetic Science Learning Center at the University of Utah provides an interactive introduction to gene therapy (https://learn.genetics.utah.edu/content/genetherapy/) and a discussion of several diseases for which gene therapy has been successful (https://learn.genetics.utah.edu/content/genetherapy/success/).

Your Genome from the Wellcome Genome Campus provides an introduction to gene therapy and describes several techniques (https://www.yourgenome.org/facts/what-is-gene-therapy).

How does gene therapy work?

Gene therapy is designed to introduce genetic material into cells to compensate for abnormal genes or to make a beneficial protein. If a mutated gene causes a necessary protein to be faulty or missing, gene therapy may be able to introduce a normal copy of the gene to restore the function of the protein.

A gene that is inserted directly into a cell usually does not function. Instead, a carrier called a vector is genetically engineered to deliver the gene. Certain viruses are often used as vectors because they can deliver the new gene by infecting the cell. The viruses are modified so they can't cause disease when used in people. Some types of virus, such as retroviruses, integrate their genetic material (including the new gene) into a chromosome in the human cell. Other viruses, such as adenoviruses, introduce their DNA into the nucleus of the cell, but the DNA is not integrated into a chromosome.

The vector can be injected or given intravenously (by IV) directly into a specific tissue in the body, where it is taken up by individual cells. Alternately, a sample of the patient’s cells can be removed and exposed to the vector in a laboratory setting. The cells containing the vector are then returned to the patient. If the treatment is successful, the new gene delivered by the vector will make a functioning protein.

Researchers must overcome many technical challenges before gene therapy will be a practical approach to treating disease. For example, scientists must find better ways to deliver genes and target them to particular cells. They must also ensure that new genes are precisely controlled by the body.
A new gene is inserted directly into a cell. A carrier called a vector is genetically engineered to deliver the gene. An adenovirus introduces the DNA into the nucleus of the cell, but the DNA is not integrated into a chromosome.

For more information about how gene therapy works:

The Genetic Science Learning Center at the University of Utah provides information about various technical aspects of gene therapy in Gene Delivery: Tools of the Trade (https://learn.genetics.utah.edu/content/genetherapy/tools/). They also discuss other approaches to gene therapy (https://learn.genetics.utah.edu/content/genetherapy/approaches/) and offer a related learning activity called Space Doctor (https://learn.genetics.utah.edu/content/genetherapy/doctor/).

health/conditionsandtreatments/gene-therapy), including the gene therapy process and delivery techniques.

Penn Medicine’s OncoLink describes how gene therapy works and how it is administered to patients (https://www.oncolink.org/cancer-treatment/immunotherapy/what-is-gene-therapy).

Your Genome from the Wellcome Genome campus explains the first gene therapy trial to treat a condition called severe combined immunodeficiency (SCID) (https://www.yourgenome.org/stories/treating-the-bubble-babies-gene-therapy-in-use). It also describes other applications for gene therapy.
Is gene therapy safe?

Gene therapy is under study to determine whether it could be used to treat disease. Current research is evaluating the safety of gene therapy; future studies will test whether it is an effective treatment option. Several studies have already shown that this approach can have very serious health risks, such as toxicity, inflammation, and cancer. Because the techniques are relatively new, some of the risks may be unpredictable; however, medical researchers, institutions, and regulatory agencies are working to ensure that gene therapy research is as safe as possible.

Comprehensive federal laws, regulations, and guidelines help protect people who participate in research studies (called clinical trials). The U.S. Food and Drug Administration (FDA) regulates all gene therapy products in the United States and oversees research in this area. Researchers who wish to test an approach in a clinical trial must first obtain permission from the FDA. The FDA has the authority to reject or suspend clinical trials that are suspected of being unsafe for participants.

The National Institutes of Health (NIH) also plays an important role in ensuring the safety of gene therapy research. NIH provides guidelines for investigators and institutions (such as universities and hospitals) to follow when conducting clinical trials with gene therapy. These guidelines state that clinical trials at institutions receiving NIH funding for this type of research must be registered with the NIH Office of Biotechnology Activities. The protocol, or plan, for each clinical trial is then reviewed by the NIH Recombinant DNA Advisory Committee (RAC) to determine whether it raises medical, ethical, or safety issues that warrant further discussion at one of the RAC’s public meetings.

An Institutional Review Board (IRB) and an Institutional Biosafety Committee (IBC) must approve each gene therapy clinical trial before it can be carried out. An IRB is a committee of scientific and medical advisors and consumers that reviews all research within an institution. An IBC is a group that reviews and approves an institution’s potentially hazardous research studies. Multiple levels of evaluation and oversight ensure that safety concerns are a top priority in the planning and carrying out of gene therapy research.

For more information about the safety and oversight of gene therapy:

The Genetic Science Learning Center at the University of Utah explains challenges related to gene therapy (https://learn.genetics.utah.edu/content/genetherapy/challenges/).

The NIH’s Office of Biotechnology Activities provides NIH guidelines for biosafety (https://osp.od.nih.gov/biotechnology/nih-guidelines/).
What are the ethical issues surrounding gene therapy?

Because gene therapy involves making changes to the body’s set of basic instructions, it raises many unique ethical concerns. The ethical questions surrounding gene therapy include:

- How can “good” and “bad” uses of gene therapy be distinguished?
- Who decides which traits are normal and which constitute a disability or disorder?
- Will the high costs of gene therapy make it available only to the wealthy?
- Could the widespread use of gene therapy make society less accepting of people who are different?
- Should people be allowed to use gene therapy to enhance basic human traits such as height, intelligence, or athletic ability?

Current gene therapy research has focused on treating individuals by targeting the therapy to body cells such as bone marrow or blood cells. This type of gene therapy cannot be passed to a person’s children. Gene therapy could be targeted to egg and sperm cells (germ cells), however, which would allow the inserted gene to be passed to future generations. This approach is known as germline gene therapy.

The idea of germline gene therapy is controversial. While it could spare future generations in a family from having a particular genetic disorder, it might affect the development of a fetus in unexpected ways or have long-term side effects that are not yet known. Because people who would be affected by germline gene therapy are not yet born, they can’t choose whether to have the treatment. Because of these ethical concerns, the U.S. Government does not allow federal funds to be used for research on germline gene therapy in people.

For more information about the ethical issues raised by gene therapy:

A debate of the ethics of germline gene therapy (https://www.yourgenome.org/debates/is-germline-gene-therapy-ethical) is presented by yourgenome.org from the Wellcome Genome Campus.

A discussion of the ethics of gene therapy and genetic engineering (https://medicine.missouri.edu/centers-institutes-labs/health-ethics/faq/gene-therapy) is available from the University of Missouri Center for Health Ethics.
Is gene therapy available to treat my disorder?

Gene therapy is currently available primarily in a research setting. The U.S. Food and Drug Administration (FDA) has approved only a limited number of gene therapy products (https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products) for sale in the United States.

Hundreds of research studies (clinical trials) are under way to test gene therapy as a treatment for genetic conditions, cancer, and HIV/AIDS. If you are interested in participating in a clinical trial, talk with your doctor or a genetics professional about how to participate.

You can also search for clinical trials online. ClinicalTrials.gov (https://clinicaltrials.gov/), a service of the National Institutes of Health, provides easy access to information about clinical trials. You can search for a specific clinical trial or browse by health condition or sponsor. You may wish to refer to a list of gene therapy clinical trials (https://clinicaltrials.gov/search?term=%22gene+therapy%22) that are accepting (or will accept) participants.
The Human Genome Project

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is a genome?</td>
<td>279</td>
</tr>
<tr>
<td>What was the Human Genome Project and why has it been important?</td>
<td>280</td>
</tr>
<tr>
<td>What were the goals of the Human Genome Project?</td>
<td>281</td>
</tr>
<tr>
<td>What did the Human Genome Project accomplish?</td>
<td>282</td>
</tr>
<tr>
<td>What were some of the ethical, legal, and social implications addressed</td>
<td>283</td>
</tr>
<tr>
<td>by the Human Genome Project?</td>
<td></td>
</tr>
</tbody>
</table>
What is a genome?

A genome is an organism’s complete set of DNA, including all of its genes. Each genome contains all of the information needed to build and maintain that organism. In humans, a copy of the entire genome—more than 3 billion DNA base pairs—is contained in all cells that have a nucleus.

For more information about genomes:

Additional information about the human genome can be found in Explore the Genome Within (https://unlockinglifescode.org/explore/genome-within-us/explore-genome-within), part of the exhibit Genome: Unlocking Life’s Code.

yourgenome.org, a service of the Wellcome Trust, offers basic and in-depth explanations of the genome (https://www.yourgenome.org/facts/what-is-a-genome).
What was the Human Genome Project and why has it been important?

The Human Genome Project was an international research effort to determine the sequence of the human genome and identify the genes that it contains. The Project was coordinated by the National Institutes of Health and the U.S. Department of Energy. Additional contributors included universities across the United States and international partners in the United Kingdom, France, Germany, Japan, and China. The Human Genome Project formally began in 1990 and was completed in 2003, 2 years ahead of its original schedule.

The work of the Human Genome Project has allowed researchers to begin to understand the blueprint for building a person. As researchers learn more about the functions of genes and proteins, this knowledge will have a major impact in the fields of medicine, biotechnology, and the life sciences.

For more information about the Human Genome Project:

yourgenome.org, a service of the Wellcome Trust, offers an overview of the Human Genome Project, including a timeline (https://www.yourgenome.org/facts/timeline-the-human-genome-project) and approaches to sequencing (https://www.yourgenome.org/video/how-the-human-genome-was-sequenced).

What were the goals of the Human Genome Project?

The main goals of the Human Genome Project were to provide a complete and accurate sequence of the 3 billion DNA base pairs that make up the human genome and to find all of the estimated 20,000 to 25,000 human genes. The Project also aimed to sequence the genomes of several other organisms that are important to medical research, such as the mouse and the fruit fly.

In addition to sequencing DNA, the Human Genome Project sought to develop new tools to obtain and analyze the data and to make this information widely available. Also, because advances in genetics have consequences for individuals and society, the Human Genome Project committed to exploring the consequences of genomic research through its Ethical, Legal, and Social Implications (ELSI) program.

For more information about the Human Genome Project's goals:

The National Human Genome Research Institute provides a fact sheet about DNA sequencing (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Fact-Sheet).

The National Human Genome Research Institute details the goals and accomplishments (https://www.genome.gov/11006945/human-genome-project-goals) of the Human Genome Project.
What did the Human Genome Project accomplish?

In April 2003, researchers announced that the Human Genome Project had completed a high-quality sequence of essentially the entire human genome. This sequence closed the gaps from a working draft of the genome, which was published in 2001. It also identified the locations of many human genes and provided information about their structure and organization. The Project made the sequence of the human genome and tools to analyze the data freely available via the Internet.

In addition to the human genome, the Human Genome Project sequenced the genomes of several other organisms, including brewers' yeast, the roundworm, and the fruit fly. In 2002, researchers announced that they had also completed a working draft of the mouse genome. By studying the similarities and differences between human genes and those of other organisms, researchers can discover the functions of particular genes and identify which genes are critical for life.

The Project's Ethical, Legal, and Social Implications (ELSI) program became the world's largest bioethics program and a model for other ELSI programs worldwide. For additional information about ELSI and the program's accomplishments, please refer to What were some of the ethical, legal, and social implications addressed by the Human Genome Project? on page 283.

For more information about the accomplishments of the Human Genome Project:

What were some of the ethical, legal, and social implications addressed by the Human Genome Project?

The Ethical, Legal, and Social Implications (ELSI) program was founded in 1990 as an integral part of the Human Genome Project. The mission of the ELSI program was to identify and address issues raised by genomic research that would affect individuals, families, and society. A percentage of the Human Genome Project budget at the National Institutes of Health and the U.S. Department of Energy was devoted to ELSI research.

The ELSI program focused on the possible consequences of genomic research in four main areas:

- Privacy and fairness in the use of genetic information, including the potential for genetic discrimination in employment and insurance.
- The integration of new genetic technologies, such as genetic testing, into the practice of clinical medicine.
- Ethical issues surrounding the design and conduct of genetic research with people, including the process of informed consent on page 200.
- The education of healthcare professionals, policy makers, students, and the public about genetics and the complex issues that result from genomic research.

For more information about the ELSI program:

Information about the ELSI program at the National Institutes of Health, including program goals and activities, is available in the fact sheet The Ethical, Legal and Social Implications (ELSI) Research Program (https://www.genome.gov/Funded-Programs-Projects/ELSI-Research-Program-ethical-legal-social-implications) from the National Human Genome Research Institute. The ELSI Planning and Evaluation History web page (https://www.genome.gov/10001754/elsi-planning-and-evaluation-history) provides a more detailed discussion of the program.

The World Health Organization provides a list of links to ELSI-related resources (https://www.who.int/genomics/elsi/resources/en/).
Genomic Research

Table of Contents

Section Page
What are the next steps in genomic research? 285
What are single nucleotide polymorphisms (SNPs)? 286
What are genome-wide association studies? 287
What is the International HapMap Project? 288
What is the Encyclopedia of DNA Elements (ENCODE) Project? 290
What is pharmacogenomics? 292
What are genome editing and CRISPR-Cas9? 294
What are the next steps in genomic research?

Discovering the sequence of the human genome was only the first step in understanding how the instructions coded in DNA lead to a functioning human being. The next stage of genomic research will begin to derive meaningful knowledge from the DNA sequence. Research studies that build on the work of the Human Genome Project are under way worldwide.

The objectives of continued genomic research include the following:

- Determine the function of genes and the elements that regulate genes throughout the genome.
- Find variations in the DNA sequence among people and determine their significance. The most common type of genetic variation is known as a single nucleotide polymorphism or SNP (pronounced “snip”). These small differences may help predict a person’s risk of particular diseases and response to certain medications.
- Discover the 3-dimensional structures of proteins and identify their functions.
- Explore how DNA and proteins interact with one another and with the environment to create complex living systems.
- Develop and apply genome-based strategies for the early detection, diagnosis, and treatment of disease.
- Sequence the genomes of other organisms, such as the rat, cow, and chimpanzee, in order to compare similar genes between species.
- Develop new technologies to study genes and DNA on a large scale and store genomic data efficiently.
- Continue to explore the ethical, legal, and social issues raised by genomic research.

For more information about the genomic research following the Human Genome Project:

The National Human Genome Research Institute supports research in many of the areas described above. The Institute provides detailed information about its research initiatives at NIH (https://www.genome.gov/research-at-nhgri).

The Wellcome Trust Sanger Institute discusses the 1000 Genomes Project (https://wellcome.ac.uk/press-release/1000-genomes-project-publishes-most-comprehensive-map-date-human-genetic-variation) in a press release that describes the key objectives of the project.
What are single nucleotide polymorphisms (SNPs)?

Single nucleotide polymorphisms, frequently called SNPs (pronounced “snips”), are the most common type of genetic variation among people. Each SNP represents a difference in a single DNA building block, called a nucleotide. For example, a SNP may replace the nucleotide cytosine (C) with the nucleotide thymine (T) in a certain stretch of DNA.

SNPs occur normally throughout a person’s DNA. They occur almost once in every 1,000 nucleotides on average, which means there are roughly 4 to 5 million SNPs in a person's genome. These variations may be unique or occur in many individuals; scientists have found more than 100 million SNPs in populations around the world. Most commonly, these variations are found in the DNA between genes. They can act as biological markers, helping scientists locate genes that are associated with disease. When SNPs occur within a gene or in a regulatory region near a gene, they may play a more direct role in disease by affecting the gene’s function.

Most SNPs have no effect on health or development. Some of these genetic differences, however, have proven to be very important in the study of human health. Researchers have found SNPs that may help predict an individual’s response to certain drugs, susceptibility to environmental factors such as toxins, and risk of developing particular diseases. SNPs can also be used to track the inheritance of disease genes within families. Future studies will work to identify SNPs associated with complex diseases such as heart disease, diabetes, and cancer.

For more information about SNPs:

An audio definition of SNPs (https://www.genome.gov/genetics-glossary/Single-Nucleotide-Polymorphisms) is available from the National Human Genome Research Institute’s Talking Glossary of Genetic Terms.

How scientists locate SNPs in the genome (https://learn.genetics.utah.edu/content/precision/snips/) is explained by the University of Utah Genetic Science Learning Center.

For people interested in more technical data, several databases of known SNPs are available:

- National Bioscience Database Center of the Japan Science and Technology Agency (https://biosciencedbc.jp/en/)
What are genome-wide association studies?

Genome-wide association studies are a relatively new way for scientists to identify genes involved in human disease. This method searches the genome for small variations, called single nucleotide polymorphisms or SNPs (pronounced “snips”), that occur more frequently in people with a particular disease than in people without the disease. Each study can look at hundreds or thousands of SNPs at the same time. Researchers use data from this type of study to pinpoint genes that may contribute to a person’s risk of developing a certain disease.

Because genome-wide association studies examine SNPs across the genome, they represent a promising way to study complex, common diseases in which many genetic variations contribute to a person’s risk. This approach has already identified SNPs related to several complex conditions including diabetes, heart abnormalities, Parkinson disease, and Crohn disease. Researchers hope that future genome-wide association studies will identify more SNPs associated with chronic diseases, as well as variations that affect a person’s response to certain drugs and influence interactions between a person’s genes and the environment.

For more information about genome-wide association studies:

You can also search for clinical trials of genome-wide association studies online. ClinicalTrials.gov (https://clinicaltrials.gov/), a service of the National Institutes of Health, provides easy access to information about clinical trials. You can search for a specific clinical trial or browse by health condition or sponsor. You may wish to refer to a list of genome-wide association studies (https://clinicaltrials.gov/search?term=GWAS+OR+%22Genome+Wide+Association%22) that are accepting (or will accept) participants.

For people interested in more technical information, the NCBI’s Database of Genotypes and Phenotypes (dbGaP) (https://www.ncbi.nlm.nih.gov/sites/entrez?db=gap) contains data from genome-wide association studies. An introduction to this database, as well as information about study results, is available from the dbGaP press release (https://www.nlm.nih.gov/archive//20120510/news/press_releases/dbgap_launchPR06.html). In addition, the National Human Genome Research Institute and the European Bioinformatics Institute jointly provide a Catalog of Published Genome-Wide Association Studies (https://www.ebi.ac.uk/gwas/).
What is the International HapMap Project?

The International HapMap Project is a scientific effort to identify common genetic variations among people. This project represents a collaboration of scientists from public and private organizations in six countries. Data from the project is freely available to researchers worldwide. Researchers can use the data to learn more about the relationship between genetic differences and human disease.

The HapMap (short for “haplotype map”) is a catalog of common genetic variants called single nucleotide polymorphisms or SNPs (pronounced “snips”). Each SNP represents a difference in a single DNA building block, called a nucleotide. These variations occur normally throughout a person’s DNA. When several SNPs cluster together on a chromosome, they are inherited as a block known as a haplotype. The HapMap describes haplotypes, including their locations in the genome and how common they are in different populations throughout the world.

The human genome contains roughly 10 million SNPs. It would be difficult, time-consuming, and expensive to look at each of these changes and determine whether it plays a role in human disease. Using haplotypes, researchers can sample a selection of these variants instead of studying each one. The HapMap will make carrying out large-scale studies of SNPs and human disease (called genome-wide association studies) cheaper, faster, and less complicated.

The main goal of the International HapMap Project is to describe common patterns of human genetic variation that are involved in human health and disease. Additionally, data from the project will help researchers find genetic differences that can help predict an individual’s response to particular medicines or environmental factors (such as toxins.)

For more information about the International HapMap Project:

The National Human Genome Research Institute defines haplotype (https://www.genome.gov/genetics-glossary/haplotype) in their Talking Glossary of Genetic Terms. They also provide an overview of the project in their International HapMap Project fact sheet (https://www.genome.gov/10001688/international-hapmap-project). The fact sheet includes a link to a more in-depth online tutorial on HapMap usage.

You can also search for clinical trials involving haplotypes or associated with the International HapMap Project. ClinicalTrials.gov (https://clinicaltrials.gov/), a service of the National Institutes of Health, provides easy access to information
about clinical trials. You can search for a specific clinical trial or browse by health condition or sponsor. You may wish to refer to a list of haplotype-related studies (https://clinicaltrials.gov/search?term=HAPMAP+OR+haplotype) that are accepting (or will accept) participants.
What is the Encyclopedia of DNA Elements (ENCODE) Project?

The ENCODE Project was planned as a follow-up to the Human Genome Project. The Human Genome Project sequenced the DNA that makes up the human genome; the ENCODE Project seeks to interpret this sequence. Coinciding with the completion of the Human Genome Project in 2003, the ENCODE Project began as a worldwide effort involving more than 30 research groups and more than 400 scientists.

The approximately 20,000 genes that provide instructions for making proteins account for only about 1 percent of the human genome. Researchers embarked on the ENCODE Project to figure out the purpose of the remaining 99 percent of the genome. Scientists discovered that more than 80 percent of this non-gene component of the genome, which was once considered “junk DNA,” actually has a role in regulating the activity of particular genes (gene expression).

Researchers think that changes in the regulation of gene activity may disrupt protein production and cell processes and result in disease. A goal of the ENCODE Project is to link variations in the expression of certain genes to the development of disease.

The ENCODE Project has given researchers insight into how the human genome functions. As researchers learn more about the regulation of gene activity and how genes are expressed, the scientific community will be able to better understand how the entire genome can affect human health.

For more information about the ENCODE Project:

The University of California at Santa Cruz and Stanford University provide detailed information about the findings of the ENCODE Project (https://www.encodeproject.org/) as well as the Project’s experimental procedures and many other types of data.

Published research findings are available through Nature Magazine’s Nature Encode Explorer (http://www.nature.com/encode/#/threads), which gives the public access to scientific information collected from the ENCODE Project.

The Broad Institute of the Massachusetts Institute of Technology and Harvard University describes the purpose (https://www.broadinstitute.org/news/mapping-genetic-world-beyond-genes) of the ENCODE Project.

The National Human Genome Research Institute provides an overview (https://www.genome.gov/Funded-Programs-Projects/ENCODE-Project-ENCyclopedia-Of-DNA-Elements) of the ENCODE Project.
What is pharmacogenomics?

Pharmacogenomics is the study of how genes affect a person's response to drugs. This relatively new field combines pharmacology (the science of drugs) and genomics (the study of genes and their functions) to develop effective, safe medications and doses that will be tailored to a person's genetic makeup.

Many drugs that are currently available are “one size fits all,” but they don’t work the same way for everyone. It can be difficult to predict who will benefit from a medication, who will not respond at all, and who will experience negative side effects (called adverse drug reactions). Adverse drug reactions are a significant cause of hospitalizations and deaths in the United States. With the knowledge gained from the Human Genome Project, researchers are learning how inherited differences in genes affect the body’s response to medications. These genetic differences will be used to predict whether a medication will be effective for a particular person and to help prevent adverse drug reactions. Conditions that affect a person's response to certain drugs include clopidogrel resistance, warfarin sensitivity, warfarin resistance, malignant hyperthermia, Stevens-Johnson syndrome/toxic epidermal necrolysis, and thiopurine S-methyltransferase deficiency.

The field of pharmacogenomics is still in its infancy. Its use is currently quite limited, but new approaches are under study in clinical trials. In the future, pharmacogenomics will allow the development of tailored drugs to treat a wide range of health problems, including cardiovascular disease, Alzheimer disease, cancer, HIV/AIDS, and asthma.

For more information about pharmacogenomics:

A pharmacogenomics fact sheet (https://www.genome.gov/dna-day/15-for-15/pharmacogenomics) and a list of Frequently Asked Questions about Pharmacogenomics (https://www.genome.gov/FAQ/Pharmacogenomics) is offered by the National Human Genome Research Institute.

PharmGKB (https://www.pharmgkb.org/) is a pharmacogenomics resource sponsored by the National Institutes of Health that collects information on human genetic variation and drug responses.

A list of clinical trials involving pharmacogenomics (https://clinicaltrials.gov/search/term=pharmacogenomics+OR+pharmacogenetics) is available from ClinicalTrials.gov, a service of the National Institutes of Health.
What are genome editing and CRISPR-Cas9?

Genome editing (also called gene editing) is a group of technologies that give scientists the ability to change an organism's DNA. These technologies allow genetic material to be added, removed, or altered at particular locations in the genome. Several approaches to genome editing have been developed. A recent one is known as CRISPR-Cas9, which is short for clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9. The CRISPR-Cas9 system has generated a lot of excitement in the scientific community because it is faster, cheaper, more accurate, and more efficient than other existing genome editing methods.

CRISPR-Cas9 was adapted from a naturally occurring genome editing system in bacteria. The bacteria capture snippets of DNA from invading viruses and use them to create DNA segments known as CRISPR arrays. The CRISPR arrays allow the bacteria to "remember" the viruses (or closely related ones). If the viruses attack again, the bacteria produce RNA segments from the CRISPR arrays to target the viruses' DNA. The bacteria then use Cas9 or a similar enzyme to cut the DNA apart, which disables the virus.

The CRISPR-Cas9 system works similarly in the lab. Researchers create a small piece of RNA with a short "guide" sequence that attaches (binds) to a specific target sequence of DNA in a genome. The RNA also binds to the Cas9 enzyme. As in bacteria, the modified RNA is used to recognize the DNA sequence, and the Cas9 enzyme cuts the DNA at the targeted location. Although Cas9 is the enzyme that is used most often, other enzymes (for example Cpf1) can also be used. Once the DNA is cut, researchers use the cell's own DNA repair machinery to add or delete pieces of genetic material, or to make changes to the DNA by replacing an existing segment with a customized DNA sequence.

Genome editing is of great interest in the prevention and treatment of human diseases. Currently, most research on genome editing is done to understand diseases using cells and animal models. Scientists are still working to determine whether this approach is safe and effective for use in people. It is being explored in research on a wide variety of diseases, including single-gene disorders such as cystic fibrosis, hemophilia, and sickle cell disease. It also holds promise for the treatment and prevention of more complex diseases on page 57, such as cancer, heart disease, mental illness, and human immunodeficiency virus (HIV) infection.

Ethical concerns arise when genome editing, using technologies such as CRISPR-Cas9, is used to alter human genomes. Most of the changes introduced with genome editing are limited to somatic cells, which are cells other than egg and sperm cells. These changes affect only certain tissues and are not passed
from one generation to the next. However, changes made to genes in egg or sperm cells (germline cells) or in the genes of an embryo could be passed to future generations. Germline cell and embryo genome editing bring up a number of ethical challenges, including whether it would be permissible to use this technology to enhance normal human traits (such as height or intelligence). Based on concerns about ethics and safety, germline cell and embryo genome editing are currently illegal in many countries.

Scientific journal articles for further reading

For more information about CRISPR-Cas9 and other genome editing technologies:

The National Human Genome Research Institute has a series of fact sheets about genome editing:

- Overview of genome editing (https://www.genome.gov/about-genomics/policy-issues/what-is-Genome-Editing)
- How does genome editing work? (https://www.genome.gov/about-genomics/policy-issues/Genome-Editing/How-genome-editing-works)
- How is genome editing used? (https://www.genome.gov/about-genomics/policy-issues/Genome-Editing/How-genome-editing-is-used)
- What are the ethical concerns about genome editing? (https://www.genome.gov/about-genomics/policy-issues/Genome-Editing/ethical-concerns)
- What’s happening in genome editing right now? (https://www.genome.gov/about-genomics/policy-issues/Genome-Editing/happening-right-now)

Questions and answers about CRISPR (https://www.broadinstitute.org/what-broad/areas-focus/project-spotlight/questions-and-answers-about-crispr) are available from the Broad Institute.

The Personal Genetics Education Project has a fact sheet, Genetic Modification, Genome Editing, and CRISPR (https://pged.org/genetic-modification-genome-editing-and-crispr/), that provides an introduction to genome editing.

Yourgenome.org (from the Wellcome Genome Campus) provides information for the public about CRISPR-Cas9 (https://www.yourgenome.org/facts/what-is-crispr-cas9).

A video illustrating how CRISPR-Cas9 works (https://www.youtube.com/watch?v=2pp17E4E-O8) is available from the McGovern Institute for Brain Research at MIT.
ClinicalTrials.gov has a list of human studies using genome editing (https://clinicaltrials.gov/ct2/results?cond=&term=CRISPR+OR+genome+editing+OR+gene+editing) related to various diseases.
Precision Medicine

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is precision medicine?</td>
<td>299</td>
</tr>
<tr>
<td>What is the difference between precision medicine and personalized medicine? What about pharmacogenomics?</td>
<td>301</td>
</tr>
<tr>
<td>What is the Precision Medicine Initiative?</td>
<td>302</td>
</tr>
<tr>
<td>What are some potential benefits of precision medicine and the Precision Medicine Initiative?</td>
<td>304</td>
</tr>
<tr>
<td>What are some of the challenges facing precision medicine and the Precision Medicine Initiative?</td>
<td>306</td>
</tr>
</tbody>
</table>
What is precision medicine?

According to the Precision Medicine Initiative, precision medicine is "an emerging approach for disease treatment and prevention that takes into account individual variability in genes, environment, and lifestyle for each person." This approach will allow doctors and researchers to predict more accurately which treatment and prevention strategies for a particular disease will work in which groups of people. It is in contrast to a one-size-fits-all approach, in which disease treatment and prevention strategies are developed for the average person, with less consideration for the differences between individuals.

Although the term "precision medicine" is relatively new, the concept has been a part of healthcare for many years. For example, a person who needs a blood transfusion is not given blood from a randomly selected donor; instead, the donor’s blood type is matched to the recipient to reduce the risk of complications. Although examples can be found in several areas of medicine, the role of precision medicine in day-to-day healthcare is relatively limited. Researchers hope that this approach will expand to many areas of health and healthcare in coming years.

Learn more about precision medicine:

Information about Genetics Home Reference and precision medicine is available from the interactive Journal of Medical Research (i-JMR) article, "Information Needs in the Precision Medicine Era: How Genetics Home Reference Can Help (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917728/)."

Information about precision medicine (https://learn.genetics.utah.edu/content/precision/) is also available from the Genetic Science Learning Center at the University of Utah.
What is the difference between precision medicine and personalized medicine? What about pharmacogenomics?

There is a lot of overlap between the terms "precision medicine" and "personalized medicine." According to the National Research Council, "personalized medicine" is an older term with a meaning similar to "precision medicine." However, there was concern that the word "personalized" could be misinterpreted to imply that treatments and preventions are being developed uniquely for each individual; in precision medicine, the focus is on identifying which approaches will be effective for which patients based on genetic, environmental, and lifestyle factors. The Council therefore preferred the term "precision medicine" to "personalized medicine." However, some people still use the two terms interchangeably.

Pharmacogenomics on page 292 is a part of precision medicine. Pharmacogenomics is the study of how genes affect a person’s response to particular drugs. This relatively new field combines pharmacology (the science of drugs) and genomics (the study of genes and their functions) to develop effective, safe medications and doses that are tailored to variations in a person’s genes.

Read more about precision medicine, personalized medicine, and pharmacogenomics:

A 2011 report from the National Research Council (https://www.plengegen.com/wp-content/uploads/4_Toward-Precision-Medicine.pdf) provides a detailed overview of precision medicine, including the reasoning behind the Council’s preference for the term "precision medicine" over "personalized medicine."

Genetics Home Reference provides an introduction to pharmacogenomics on page 292. Additional information about pharmacogenomics (https://www.genome.gov/FAQ/Pharmacogenomics) is available from the National Human Genome Research Institute (NHGRI).
What is the Precision Medicine Initiative?

The Precision Medicine Initiative is a long-term research endeavor, involving the National Institutes of Health (NIH) and multiple other research centers, which aims to understand how a person's genetics, environment, and lifestyle can help determine the best approach to prevent or treat disease.

The Precision Medicine Initiative has both short-term and long-term goals. The short-term goals involve expanding precision medicine in the area of cancer research. Researchers at the National Cancer Institute (NCI) hope to use an increased knowledge of the genetics and biology of cancer to find new, more effective treatments for various forms of this disease. The long-term goals of the Precision Medicine Initiative focus on bringing precision medicine to all areas of health and healthcare on a large scale. To this end, the NIH has launched a study, known as the All of Us Research Program, which involves a group (cohort) of at least 1 million volunteers from around the United States. Participants are providing genetic data, biological samples, and other information about their health. To encourage open data sharing, participants can access their health information, as well as research that uses their data, during the study. Researchers can use these data to study a large range of diseases, with the goals of better predicting disease risk, understanding how diseases occur, and finding improved diagnosis and treatment strategies.

Learn more about the Precision Medicine Initiative:

The NIH website about the All of Us Research Program (https://allofus.nih.gov/) provides information about the goals of and participants in the Precision Medicine Initiative. A visual overview of the program partners (https://allofus.nih.gov/about/program-partners) is also available. Additionally, the NIH Precision Medicine Initiative channel (https://www.youtube.com/channel/UCQId1TfpwPaYiDIGlxEhlkA) on YouTube includes talks by scientists and others about various aspects of the initiative.

Dr. Francis Collins, director of the NIH, and Dr. Harold Varmus, former director of the NCI, wrote more about their vision for the Precision Medicine Initiative
What are some potential benefits of precision medicine and the Precision Medicine Initiative?

Precision medicine holds promise for improving many aspects of health and healthcare. Some of these benefits will be apparent soon, as the All of Us Research Program continues and new tools and approaches for managing data are developed. Other benefits will result from long-term research in precision medicine and may not be realized for years.

Potential benefits of the Precision Medicine Initiative:

- New approaches for protecting research participants, particularly patients' privacy and the confidentiality of their data.
- Design of new tools for building, analyzing, and sharing large sets of medical data.
- Improvement of FDA oversight of tests, drugs, and other technologies to support innovation while ensuring that these products are safe and effective.
- New partnerships of scientists in a wide range of specialties, as well as people from the patient advocacy community, universities, pharmaceutical companies, and others.
- Opportunity for a million people to contribute to the advancement of scientific research.

Potential long-term benefits of research in precision medicine:

- Wider ability of doctors to use patients' genetic and other molecular information as part of routine medical care.
- Improved ability to predict which treatments will work best for specific patients.
- Better understanding of the underlying mechanisms by which various diseases occur.
- Improved approaches to preventing, diagnosing, and treating a wide range of diseases.
- Better integration of electronic health records (EHRs) in patient care, which will allow doctors and researchers to access medical data more easily.
Read more about the promise of precision medicine and the Precision Medicine Initiative:

Dr. Francis Collins, director of the NIH, and Dr. Harold Varmus, former director of the NCI, wrote about their vision for the Precision Medicine Initiative (https://www.nejm.org/doi/full/10.1056/NEJMp1500523) in the New England Journal of Medicine. Dr. Collins also gave a talk about his vision (https://www.youtube.com/watch?v=ObBYk0MOuDM) for the project, which is available on the NIH Precision Medicine Initiative channel (https://www.youtube.com/channel/UCQld1TfpwPaYiDIGlxEhlkA) on YouTube.

Examples are available of how precision medicine is helping Americans (https://obamawhitehouse.archives.gov/blog/2015/01/29/precision-medicine-already-working-cure-americans-these-are-their-stories).

Data about participants of the All of Us Research Program can be viewed on their Research Hub (https://www.researchallofus.org/).
What are some of the challenges facing precision medicine and the Precision Medicine Initiative?

Precision medicine is a young and growing field. Many of the technologies that will be needed to meet the goals of the Precision Medicine Initiative are in the early stages of development or have not yet been developed. For example, researchers will need to find ways to standardize the collection of clinic and hospital data from more than 1 million volunteers around the country. They will also need to design databases to store large amounts of patient data efficiently.

The Precision Medicine Initiative also raises ethical, social, and legal issues. It will be critical to find ways to protect participants’ privacy and the confidentiality of their health information. Participants will need to understand the risks and benefits of participating in research, which means researchers will have to develop a rigorous process of informed consent.

Cost is also an issue with precision medicine. The Precision Medicine Initiative itself will cost many millions of dollars, and the ongoing initiative will require Congress to approve funding over multiple years. Technologies such as sequencing large amounts of DNA are expensive to carry out (although the cost of sequencing is decreasing quickly). Additionally, drugs that are developed to target a person’s genetic or molecular characteristics are likely to be expensive. Reimbursement from third-party payers (such as private insurance companies) for these targeted drugs is also likely to become an issue.

If precision medicine approaches are to become part of routine healthcare, doctors and other healthcare providers will need to know more about molecular genetics and biochemistry. They will increasingly find themselves needing to interpret the results of genetic tests, understand how that information is relevant to treatment or prevention approaches, and convey this knowledge to patients.

Learn more about challenges related to precision medicine:

The NIH Precision Medicine Initiative channel on YouTube (https://www.youtube.com/channel/UCQId1TfpwPaYiDIGlxEhlkA) offers videos of talks by leading experts on various aspects of the project, including issues related to data collection and sharing, storing data in electronic health records, and participant protection.

The Precision Medicine Initiative has information about its Privacy and Trust Principles (https://allofus.nih.gov/about/program-overview/precision-medicine-initiative-privacy-and-trust-principles) and Data Security Policy Principles and

The Genetic Literacy Project provides the editorial “That ‘Precision Medicine’ initiative? A Reality Check” (https://geneticliteracyproject.org/2015/02/03/that-precision-medicine-initiative-a-reality-check/) outlining some of the possible challenges and limitations of the Precision Medicine Initiative.