Skip navigation

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

URL of this page: https://medlineplus.gov/genetics/gene/idh2/

IDH2 gene

isocitrate dehydrogenase (NADP(+)) 2

Normal Function

The IDH2 gene provides instructions for making an enzyme called isocitrate dehydrogenase 2. This enzyme is found in mitochondria, which are the energy-producing centers within cells. Within mitochondria, the enzyme participates in reactions that produce energy for cell activities. Specifically, isocitrate dehydrogenase 2 normally converts a compound called isocitrate to another compound called 2-ketoglutarate. A series of additional enzymes further process 2-ketoglutarate to produce energy. The conversion reaction also produces a molecule called NADPH, which is necessary for many cellular processes and helps protect cells from potentially harmful molecules called reactive oxygen species.

Health Conditions Related to Genetic Changes

2-hydroxyglutaric aciduria

At least two mutations in the IDH2 gene have been found to cause a type of 2-hydroxyglutaric aciduria known as D-2-hydroxyglutaric aciduria (D-2-HGA) type II. This condition has a variety of signs and symptoms that result primarily from progressive damage to the brain beginning early in life.

The mutations that cause D-2-HGA type II are present in all of an affected person's cells. These mutations prevent isocitrate dehydrogenase 2 from carrying out its usual activity, the conversion of isocitrate to 2-ketoglutarate. Instead, the altered enzyme takes on a new, abnormal function: the production of a compound called D-2-hydroxyglutarate. Because the genetic changes lead to an enzyme with a new function, they are classified as "gain-of-function" mutations.

In people with D-2-HGA type II, D-2-hydroxyglutarate builds up abnormally in cells. At high levels, this compound can damage cells and lead to cell death. Brain cells appear to be the most vulnerable to the toxic effects of this compound, which may explain why the signs and symptoms of D-2-HGA type II primarily involve the brain. However, some people with this form of the disorder also have a weakened and enlarged heart (cardiomyopathy). It is unclear why an accumulation of D-2-hydroxyglutarate may be associated with cardiomyopathy.

More About This Health Condition

Maffucci syndrome

Mutations in the IDH2 gene can cause Maffucci syndrome, a disorder that primarily affects the bones and skin. It is characterized by multiple enchondromas, which are noncancerous (benign) growths of cartilage that develop in the bones, and red or purplish growths in the skin consisting of tangles of abnormal blood vessels (hemangiomas).

The mutations associated with Maffucci syndrome are somatic, which means they occur during a person's lifetime and are not inherited. A somatic mutation occurs in a single cell. As that cell continues to grow and divide, the cells derived from it also have the same mutation. In Maffucci syndrome, the mutation is thought to occur in a cell during early development before birth; cells that arise from that abnormal cell have the mutation, while the body's other cells do not. This situation is called mosaicism. IDH2 gene mutations have been found in some enchondroma cells, and like other IDH2 gene mutations discussed previously, they appear to be gain-of-function mutations that result in the production of D-2-hydroxyglutarate, but the relationship between the abnormal buildup of this substance and the signs and symptoms of the disorder is not well understood.

More About This Health Condition

Ollier disease

Mutations in the IDH2 gene can also cause Ollier disease, a disorder similar to Maffucci syndrome (described above) but without the blood vessel abnormalities.

As in Maffucci syndrome, the IDH2 gene mutations that cause Ollier disease are somatic gain-of-function mutations and are thought to occur early in development, resulting in mosaicism. IDH2 gene mutations have been found in enchondroma cells in a few people with Ollier disease, but the relationship between the mutations and the signs and symptoms of the disorder is not well understood, and it is not clear why IDH2 mutations can cause these various disorders.

More About This Health Condition

Cholangiocarcinoma

MedlinePlus Genetics provides information about Cholangiocarcinoma

More About This Health Condition

Cytogenetically normal acute myeloid leukemia

Mutations in the IDH2 gene have been identified in some people with a form of blood cancer known as cytogenetically normal acute myeloid leukemia (CN-AML). While large chromosomal abnormalities can be involved in the development of acute myeloid leukemia, about half of cases do not have these abnormalities; these are classified as CN-AML. Nearly 20 percent of people with CN-AML have a mutation in the IDH2 gene.

The IDH2 gene mutations involved in CN-AML are called somatic mutations; they are found only in cells that become cancerous and are not inherited. These mutations change single protein building blocks (amino acids) in the isocitrate dehydrogenase 2 enzyme. Like the genetic changes that cause the conditions described above, the IDH2 gene mutations found in CN-AML are gain-of-function mutations. These mutations alter the function of isocitrate dehydrogenase 2 such that it abnormally produces D-2-hydroxyglutarate. Studies suggest that an increase in D-2-hydroxyglutarate may interfere with the process that determines the type of cell an immature cell will ultimately become (cell fate determination). Instead of becoming normal mature cells, immature blood cells with somatic IDH2 gene mutations become cancerous and divide uncontrollably, which plays a role in the development of CN-AML.

More About This Health Condition

Primary myelofibrosis

MedlinePlus Genetics provides information about Primary myelofibrosis

More About This Health Condition

Other cancers

Somatic mutations in the IDH2 gene have been associated with other forms of cancer, including primary myelofibrosis (linked above) and brain tumors called gliomas. Like the genetic changes that cause the conditions described above, the IDH2 gene mutations found in gliomas are gain-of-function mutations that lead to the abnormal production of D-2-hydroxyglutarate. As in CN-AML, D-2-hydroxyglutarate likely blocks the maturation of cells, resulting in overproduction of immature cells and formation of tumors. It is unclear why IDH2 gene mutations have been found in only these few types of cancer.

Other Names for This Gene

  • D2HGA2
  • ICD-M
  • IDH
  • IDHM
  • IDHP_HUMAN
  • IDP
  • IDPM
  • isocitrate dehydrogenase 2 (NADP+), mitochondrial
  • isocitrate dehydrogenase [NADP], mitochondrial
  • mNADP-IDH
  • NADP(+)-specific ICDH
  • oxalosuccinate decarboxylase

Additional Information & Resources

Tests Listed in the Genetic Testing Registry

Scientific Articles on PubMed

Gene and Variant Databases

References

  • Amary MF, Damato S, Halai D, Eskandarpour M, Berisha F, Bonar F, McCarthy S, Fantin VR, Straley KS, Lobo S, Aston W, Green CL, Gale RE, Tirabosco R, Futreal A, Campbell P, Presneau N, Flanagan AM. Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nat Genet. 2011 Nov 6;43(12):1262-5. doi: 10.1038/ng.994. Citation on PubMed
  • Kranendijk M, Struys EA, Salomons GS, Van der Knaap MS, Jakobs C. Progress in understanding 2-hydroxyglutaric acidurias. J Inherit Metab Dis. 2012 Jul;35(4):571-87. doi: 10.1007/s10545-012-9462-5. Epub 2012 Mar 6. Citation on PubMed or Free article on PubMed Central
  • Kranendijk M, Struys EA, van Schaftingen E, Gibson KM, Kanhai WA, van der Knaap MS, Amiel J, Buist NR, Das AM, de Klerk JB, Feigenbaum AS, Grange DK, Hofstede FC, Holme E, Kirk EP, Korman SH, Morava E, Morris A, Smeitink J, Sukhai RN, Vallance H, Jakobs C, Salomons GS. IDH2 mutations in patients with D-2-hydroxyglutaric aciduria. Science. 2010 Oct 15;330(6002):336. doi: 10.1126/science.1192632. Epub 2010 Sep 16. Citation on PubMed
  • Losman JA, Looper RE, Koivunen P, Lee S, Schneider RK, McMahon C, Cowley GS, Root DE, Ebert BL, Kaelin WG Jr. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science. 2013 Mar 29;339(6127):1621-5. doi: 10.1126/science.1231677. Epub 2013 Feb 7. Citation on PubMed or Free article on PubMed Central
  • Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A, Wellen KE, O'Rourke DM, Berger SL, Chan TA, Levine RL, Mellinghoff IK, Thompson CB. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012 Feb 15;483(7390):474-8. doi: 10.1038/nature10860. Citation on PubMed or Free article on PubMed Central
  • Pansuriya TC, van Eijk R, d'Adamo P, van Ruler MA, Kuijjer ML, Oosting J, Cleton-Jansen AM, van Oosterwijk JG, Verbeke SL, Meijer D, van Wezel T, Nord KH, Sangiorgi L, Toker B, Liegl-Atzwanger B, San-Julian M, Sciot R, Limaye N, Kindblom LG, Daugaard S, Godfraind C, Boon LM, Vikkula M, Kurek KC, Szuhai K, French PJ, Bovee JV. Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat Genet. 2011 Nov 6;43(12):1256-61. doi: 10.1038/ng.1004. Citation on PubMed or Free article on PubMed Central
  • Reitman ZJ, Yan H. Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst. 2010 Jul 7;102(13):932-41. doi: 10.1093/jnci/djq187. Epub 2010 May 31. Citation on PubMed or Free article on PubMed Central
  • Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A, Finke C, Score J, Gangat N, Mannarelli C, Ketterling RP, Rotunno G, Knudson RA, Susini MC, Laborde RR, Spolverini A, Pancrazzi A, Pieri L, Manfredini R, Tagliafico E, Zini R, Jones A, Zoi K, Reiter A, Duncombe A, Pietra D, Rumi E, Cervantes F, Barosi G, Cazzola M, Cross NC, Tefferi A. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013 Sep;27(9):1861-9. doi: 10.1038/leu.2013.119. Epub 2013 Apr 26. Citation on PubMed
  • Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE, Rabinowitz JD, Carroll M, Su SM, Sharp KA, Levine RL, Thompson CB. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010 Mar 16;17(3):225-34. doi: 10.1016/j.ccr.2010.01.020. Epub 2010 Feb 18. Citation on PubMed or Free article on PubMed Central
  • Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009 Feb 19;360(8):765-73. doi: 10.1056/NEJMoa0808710. Citation on PubMed or Free article on PubMed Central
  • Yang H, Ye D, Guan KL, Xiong Y. IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res. 2012 Oct 15;18(20):5562-71. doi: 10.1158/1078-0432.CCR-12-1773. Citation on PubMed or Free article on PubMed Central

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.