UROS gene
uroporphyrinogen III synthase

Normal Function

The UROS gene provides instructions for making an enzyme known as uroporphyrinogen III synthase. This enzyme is involved in the production of a molecule called heme. Heme is vital for all of the body's organs, although it is most abundant in the blood, bone marrow, and liver. Heme is an essential component of iron-containing proteins called hemoproteins, including hemoglobin (the protein that carries oxygen in the blood).

The production of heme is a multi-step process that requires eight different enzymes. Uroporphyrinogen III synthase is responsible for the fourth step in this process, in which hydroxymethylbilane (the product of the third step) is rearranged to form uroporphyrinogen III. In subsequent steps, four other enzymes produce and modify compounds that ultimately lead to heme.

Health Conditions Related to Genetic Changes

Porphyria

More than 35 mutations in the UROS gene have been found to cause a form of porphyria known as congenital erythropoietic porphyria. Most of these mutations change single protein building blocks (amino acids) in uroporphyrinogen III synthase. The most common UROS gene mutation, which is found in about one-third of all cases of congenital erythropoietic porphyria, replaces the amino acid cysteine with the amino acid arginine at position 73 (written as Cys73Arg or C73R). Several other mutations occur in a nearby region of DNA that regulates the activity of the UROS gene.

Mutations in or near the UROS gene alter the structure and function of uroporphyrinogen III synthase, which reduces the enzyme's activity. A shortage of functional uroporphyrinogen III synthase allows compounds called porphyrins to build up in developing red blood cells. These compounds are formed during the normal process of heme production, but reduced activity of uroporphyrinogen III synthase allows them to accumulate to toxic levels. The excess porphyrins can leak out of developing red blood cells and be transported through the bloodstream to the skin and other tissues. An accumulation of these substances in the skin causes oversensitivity to sunlight and the other characteristic features of congenital erythropoietic porphyria.
Chromosomal Location

Cytogenetic Location: 10q26.2, which is the long (q) arm of chromosome 10 at position 26.2

Molecular Location: base pairs 125,784,980 to 125,823,280 on chromosome 10 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

• Cosynthase
• HEM4_HUMAN
• Hydroxymethylbilane hydro-lyase (cyclizing)
• UROIIIIS
• Uroporphyrinogen co-synthetase
• Uroporphyrinogen-III cosynthase
• Uroporphyrinogen III Cosynthetase
• Uroporphyrinogen-III Synthase
• uroporphyrinogen III synthase (congenital erythropoietic porphyria)
• Uroporphyrinogen III Synthetase
• Uroporphyrinogen Isomerase

Additional Information & Resources

Educational Resources

• Biochemistry (fifth edition, 2002): Mammalian Porphyrins Are Synthesized from Glycine and Succinyl Coenzyme A
  https://www.ncbi.nlm.nih.gov/books/NBK22446/#A3395

Clinical Information from GeneReviews

• Congenital Erythropoietic Porphyria
  https://www.ncbi.nlm.nih.gov/books/NBK154652
Scientific Articles on PubMed

- PubMed
  https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28UROS%5BTIAB%5D%29+OR+%28uroporphyrinogen+III+synthase%5BTIAB%5D%29%29+OR+%28%28UROIIIS%5BTIAB%5D%29+OR+%28Uroporphyrinogen+III+Cosynthetase%5BTIAB%5D%29+OR+%28Uroporphyrinogen+III+cosynthase%5BTIAB%5D%29+OR+%28Uroporphyrinogen-III+Synthase%5BTIAB%5D%29%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+en%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3240+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- UROPORPHYRINOGEN III SYNTHASE
  http://omim.org/entry/606938

Research Resources

- ClinVar
  https://www.ncbi.nlm.nih.gov/clinvar?term=UROS%5Bgene%5D

- HGNC Gene Symbol Report

- Monarch Initiative
  https://monarchinitiative.org/gene/NCBIGene:7390

- NCBI Gene

- UniProt
  https://www.uniprot.org/uniprot/P10746

Sources for This Summary

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15868463

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12060112

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9554235
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19099412
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15652607
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10692079
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12196144
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12060141
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11254675
  Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC208941/
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17270473

Reprinted from Genetics Home Reference: 

Reviewed: July 2009
Published: November 27, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services