TTPA gene
alpha tocopherol transfer protein

Normal Function
The TTPA gene provides instructions for making the α-tocopherol transfer protein (αTTP), which is found in the liver and brain. This protein controls the distribution of vitamin E obtained from the diet (also called α-tocopherol) to cells and tissues throughout the body. Vitamin E is an antioxidant that protects cells in the body from the damaging effects of unstable molecules called free radicals. Normally, vitamin E derived from food is absorbed in the intestine and then transported into the liver on molecules called chylomicrons. After a meal, chylomicrons are formed to transport fat-soluble vitamins (such as vitamin E), dietary fats, and cholesterol from the intestine to the liver. Once in the liver, αTTP transfers vitamin E from chylomicrons to very low-density lipoproteins (VLDLs), which carry fat, fat-soluble vitamins, and cholesterol from the liver to other tissues throughout the body. The VLDLs are then released into the bloodstream so the accompanying vitamin E can be used in the body. The αTTP protein is also thought to transport vitamin E to nerve cells (neurons) in the brain.

Health Conditions Related to Genetic Changes
Ataxia with vitamin E deficiency
More than 20 mutations in the TTPA gene have been found to cause ataxia with vitamin E deficiency. This condition is characterized by the development of neurological problems including difficulty coordinating movements (ataxia) due to a buildup of harmful molecules called free radicals. Some of these mutations cause no functional protein to be made, while others change a single protein building block (amino acid) in the αTTP protein, reducing its function. As a result, the body cannot retain or use dietary vitamin E, which leads to reduced levels of this vitamin in the blood and the accumulation of free radicals. One TTPA gene mutation that is found in the Japanese population changes the amino acid histidine to the amino acid glutamine at position 101 in the αTTP protein (written as His101Glu or H101Q). This mutation is associated with the development of an eye disorder called retinitis pigmentosa that causes vision loss in people with ataxia with vitamin E deficiency.

Mutations in the TTPA gene that cause no functional αTTP protein to be made are associated with a severe form of ataxia that begins at a young age. Mutations that reduce but do not eliminate the protein’s function are associated with milder ataxia that occurs at a later age and progresses more slowly.
Chromosomal Location

Cytogenetic Location: 8q12.3, which is the long (q) arm of chromosome 8 at position 12.3

Molecular Location: base pairs 63,059,488 to 63,086,523 on chromosome 8 (Homo sapiens Updated Annotation Release 109.20191205, GRCh38.p13) (NCBI)

![Chromosome Banding Pattern]

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- alpha-tocopherol transfer protein
- alphaTTP
- ataxia (Friedreich-like) with vitamin E deficiency
- ATTP
- AVED
- tocopherol (alpha) transfer protein
- TTP1
- TTPA_HUMAN

Additional Information & Resources

Educational Resources

- Basic Neurochemistry (sixth edition, 1999): The brain depends on select vitamins and closely related compounds as antioxidants to control potentially damaging free radicals
 https://www.ncbi.nlm.nih.gov/books/NBK28242/#A2399
- Eurekah Bioscience Collection: Fat-Soluble Vitamin Deficiency
 https://www.ncbi.nlm.nih.gov/books/NBK6420/#A20540

Clinical Information from GeneReviews

- Ataxia with Vitamin E Deficiency
 https://www.ncbi.nlm.nih.gov/books/NBK1241
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28TTPA%5BTIAB%5D%29+OR+%28tocopherol+transfer+protein%5BTIAB%5D%29+OR+%28alpha-tocopherol+transfer+protein%5BTIAB%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- TOCOPHEROL TRANSFER PROTEIN, ALPHA
 http://omim.org/entry/600415

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_TTPA.html

- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=TTPA%5Bgene%5D

- HGNC Gene Symbol Report

- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:7274

- NCBI Gene

- UniProt
 https://www.uniprot.org/uniprot/P49638

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15300460

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12899840

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15065857
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11754917

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16819822

- OMIM: TOCOPHEROL TRANSFER PROTEIN, ALPHA
 http://omim.org/entry/600415

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9189046

Reprinted from Genetics Home Reference:

Reviewed: April 2008
Published: January 21, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services