TOR1A gene

torsin family 1 member A

Normal Function

The \textit{TOR1A} gene (also known as \textit{DYT1}) provides instructions for making a protein called torsinA. This protein is found in the space between two neighboring structures within cells, the nuclear envelope and the endoplasmic reticulum. The nuclear envelope surrounds the nucleus and separates it from the rest of the cell. The endoplasmic reticulum processes proteins and other molecules and helps transport them to specific destinations either inside or outside the cell. Although little is known about the function of torsinA, studies suggest that it may help process and transport other proteins. TorsinA may also participate in the movement of membranes associated with the nuclear envelope and endoplasmic reticulum.

TorsinA is active in many of the body's tissues, and it is particularly important for the normal function of nerve cells in the brain. For example, researchers have found high levels of torsinA in a part of the brain called the substantia nigra. This region contains nerve cells that produce dopamine, a chemical messenger that transmits signals within the brain to produce smooth physical movements.

Health Conditions Related to Genetic Changes

\textbf{Early-onset primary dystonia}

A particular mutation in the \textit{TOR1A} gene causes most cases of early-onset primary dystonia. This mutation, which is often called the GAG deletion or delta GAG, deletes three DNA building blocks (base pairs) from the \textit{TOR1A} gene. The resulting torsinA protein is missing one protein building block (amino acid) in a critical region. The altered protein's effect on the function of nerve cells in the brain is unclear. People with early-onset primary dystonia do not have a loss of nerve cells or obvious changes in the structure of the brain that would explain the abnormal muscle contractions seen with this condition. Instead, the altered torsinA protein may have subtle effects on the connections between nerve cells and likely disrupts chemical signaling between nerve cells that control movement. Researchers are working to determine how a change in this protein leads to the characteristic features of this disorder.

\textbf{Benign essential blepharospasm}

Several studies have examined a possible relationship between common variations (polymorphisms) in the \textit{TOR1A} gene and several forms of adult-onset dystonia, including benign essential blepharospasm. The results of these studies have been mixed. Some research has suggested that certain polymorphisms increase a
person’s risk of developing benign essential blepharospasm. However, other studies have found no connection between changes in the TOR1A gene and risk of this disorder. Researchers are still working to clarify whether variants of the TOR1A gene are related to benign essential blepharospasm and other adult-onset dystonias.

Chromosomal Location

Cytogenetic Location: 9q34.11, which is the long (q) arm of chromosome 9 at position 34.11

Molecular Location: base pairs 129,812,942 to 129,824,136 on chromosome 9 (Homo sapiens Updated Annotation Release 109.20191205, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- DQ2
- Dystonia 1 protein
- dystonia 1, torsion (autosomal dominant; torsinA)
- DYT1
- TOR1A_HUMAN
- Torsin-1A
- torsin family 1, member A (torsin A)
- torsinA

Additional Information & Resources

Clinical Information from GeneReviews

- DYT1 Early-Onset Isolated Dystonia
 https://www.ncbi.nlm.nih.gov/books/NBK1492
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28TOR1A%5BTIAB%5D%29+OR+%28DYT1%5BTIAB%5D%29+OR+%28torsinA%5BTIAB%5D%29+AND+%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+720+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- TORSIN 1A
 http://omim.org/entry/605204

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_TOR1A.html

- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=TOR1A%5Bgene%5D

- HGNC Gene Symbol Report

- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIgene:1861

- NCBI Gene

- UniProt
 https://www.uniprot.org/uniprot/O14656

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14509659

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18285800

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19380705

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17133500
Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19202559
Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167593/

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17428918
Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855419/

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14872019

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9288096

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12609485

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14581671

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14534912

Reprinted from Genetics Home Reference:
https://ghr.nlm.nih.gov/gene/TOR1A

Reviewed: May 2010
Published: March 3, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services