TNFRSF11A gene
TNF receptor superfamily member 11a

Normal Function
The TNFRSF11A gene provides instructions for making a protein called receptor activator of NF-κB (RANK). This protein plays an important role in bone remodeling, a normal process in which old bone is broken down and new bone is created to replace it. During bone remodeling, RANK helps direct the formation and function of specialized cells called osteoclasts, which break down bone tissue. RANK is located on the surface of immature osteoclasts, where it receives signals that trigger these cells to mature and become fully functional.

Health Conditions Related to Genetic Changes

Osteopetrosis

Paget disease of bone
At least two very similar mutations in the TNFRSF11A gene have been found to cause the rare, early-onset form of Paget disease of bone. Both mutations are duplications, which means that they abnormally copy a segment of genetic material within the gene. Each of these mutations results in the production of a RANK protein that contains several extra protein building blocks (amino acids).

Through a mechanism that is not well understood, duplication mutations in the TNFRSF11A gene appear to overactivate the chemical signaling pathway that promotes osteoclast formation. The increased signaling stimulates the production of too many osteoclasts and triggers these cells to break down bone abnormally. In people with early-onset Paget disease of bone, affected bone is broken down and replaced much faster than usual. When the new bone tissue grows, it is weaker and less organized than normal bone. These problems with bone remodeling cause certain bones to become unusually large, misshapen, and easily broken (fractured).

Other disorders
Mutations in the TNFRSF11A gene are responsible for several other rare bone diseases, including two very similar disorders called familial expansile osteolysis (FEO) and expansile skeletal hyperphosphatasia (ESH). These disorders have signs and symptoms that overlap with those of early-onset Paget disease of bone. In fact, some researchers believe that FEO, ESH, and early-onset Paget disease of bone actually may be slightly different forms of a single condition. FEO and ESH both
appear early in life and are characterized by skeletal abnormalities, tooth loss, and progressive hearing loss.

Like early-onset Paget disease of bone, FEO and ESH result from duplication mutations in the **TNFRSF11A** gene. Studies suggest that these mutations overactivate RANK, leading it to stimulate the production of too many osteoclasts and trigger these cells to break down bone abnormally. The resulting imbalance in bone remodeling causes the major features of these disorders. It is unclear why duplication mutations in the **TNFRSF11A** gene can cause several different bone diseases.

TNFRSF11A gene mutations also cause a bone disease called autosomal recessive osteopetrosis (ARO). This disorder appears in infancy and is characterized by abnormally dense bones. The increased bone density leads to a variety of complications, including an increased risk of fractures, vision impairment, hearing loss, and problems with the immune system related to defective bone marrow. Mutations in the **TNFRSF11A** gene appear to be a very rare cause of ARO; fewer than 10 mutations have been found in affected individuals. Most of these mutations change single amino acids in the RANK protein, which prevents it from receiving signals on the surface of immature osteoclasts. As a result, people with this condition have a total absence of mature, functional osteoclasts. Without these specialized cells to break down bone tissue, excess bone is formed throughout the skeleton.

Chromosomal Location

Cytogenetic Location: 18q21.33, which is the long (q) arm of chromosome 18 at position 21.33

Molecular Location: base pairs 62,325,287 to 62,388,096 on chromosome 18 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- CD265
- FEO
- ODFR
- OFE
• OPTB7
• osteoclast differentiation factor receptor
• OSTS
• PDB2
• RANK
• receptor activator of NF-kappa-B
• receptor activator of nuclear factor-kappa B
• TNR11_HUMAN
• TRANCER
• tumor necrosis factor receptor superfamily member 11a
• tumor necrosis factor receptor superfamily member 11a, NFKB activator
• tumor necrosis factor receptor superfamily, member 11a
• tumor necrosis factor receptor superfamily, member 11a, activator of NFKB
• tumor necrosis factor receptor superfamily, member 11a, NFKB activator

Additional Information & Resources

Educational Resources

• Molecular Biology of the Cell (fourth edition, 2002): Bone Is Continually Remodeled by the Cells Within It
 https://www.ncbi.nlm.nih.gov/books/NBK26889/#A4187

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28TNFRSF11A%5BTIAB%5D%29+AND+%28%5BMH%5D%29+OR+%5BGenetic+Phenomena%5BMH%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

• FAMILIAL EXPANSILE OSTEOLYSIS
 http://omim.org/entry/174810

• OSTEOPETROSIS, AUTOSOMAL RECESSIVE 7
 http://omim.org/entry/612301

• TUMOR NECROSIS FACTOR RECEPTOR SUPERFAMILY, MEMBER 11A
 http://omim.org/entry/603499
Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_TNFRSF11A.html
- ClinVar
- HGNC Gene Symbol Report
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:8792
- NCBI Gene
- UniProt
 https://www.uniprot.org/uniprot/Q9Y6Q6

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17447113
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18606301
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2443850/
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10615125
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12568416
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19578385
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006681/
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10677500
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC26475/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12929927

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12362049
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1734982/

• Whyte MP, Hughes AE. Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J Bone Miner Res. 2002 Jan;17(1):26-9.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11771666

Reprinted from Genetics Home Reference:

Reviewed: February 2010
Published: March 12, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services