TK2 gene
thymidine kinase 2, mitochondrial

Normal Function

The TK2 gene provides instructions for making an enzyme called thymidine kinase 2 that functions within cell structures called mitochondria, which are found in all tissues. Mitochondria are involved in a wide variety of cellular activities, including energy production; chemical signaling; and regulation of cell growth, cell division, and cell death. Mitochondria contain their own genetic material, known as mitochondrial DNA (mtDNA), which is essential for the normal function of these structures. Thymidine kinase 2 is involved in the production and maintenance of mtDNA. Specifically, this enzyme plays a role in recycling mtDNA building blocks (nucleotides) so that errors in mtDNA sequencing can be repaired and new mtDNA molecules can be produced.

Health Conditions Related to Genetic Changes

TK2-related mitochondrial DNA depletion syndrome, myopathic form

More than 30 mutations in the TK2 gene have been found to cause TK2-related mitochondrial DNA depletion syndrome, myopathic form (TK2-MDS). TK2-MDS is an inherited condition that causes progressive muscle weakness (myopathy), typically beginning in early childhood. About two-thirds of the mutations that cause this condition change single protein building blocks (amino acids) in thymidine kinase 2. All TK2 gene mutations result in a decrease of enzyme activity, which impairs recycling of mtDNA nucleotides. A shortage of nucleotides available for the repair and production of mtDNA molecules leads to a reduction in the amount of mtDNA (known as mtDNA depletion) and impairs mitochondrial function. Greater mtDNA depletion tends to cause more severe signs and symptoms. The muscle cells of people with TK2-MDS have very low amounts of mtDNA, ranging from 5 to 30 percent of normal. Other tissues can have 60 percent of normal to normal amounts of mtDNA. The cause for the variability in the amount of mtDNA lost among affected individuals, even those with the same mutations, is unknown.

It is unclear why TK2 gene mutations typically affect only muscle tissue, but the high energy demands of muscle cells may make them the most susceptible to cell death when mtDNA is lost and less energy is produced in cells.

Progressive external ophthalmoplegia
Chromosomal Location

Cytogenetic Location: 16q21, which is the long (q) arm of chromosome 16 at position 21

Molecular Location: base pairs 66,508,003 to 66,550,412 on chromosome 16 (Homo sapiens Updated Annotation Release 109.20200522, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- KITM_HUMAN
- mt-TK
- MTDPS2
- MTTK

Additional Information & Resources

Educational Resources

- Molecular Cell Biology (fourth edition, 2000): Organelle DNAs
 https://www.ncbi.nlm.nih.gov/books/NBK21574/

Clinical Information from GeneReviews

- Mitochondrial DNA Maintenance Defects Overview
 https://www.ncbi.nlm.nih.gov/books/NBK487393

- TK2-Related Mitochondrial DNA Maintenance Defect, Myopathic Form
 https://www.ncbi.nlm.nih.gov/books/NBK114628

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28TK2%5BTIAB%5D%29+OR+%28thymidine+kinase+2%5BTIAB%5D%29%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english+%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D
Catalog of Genes and Diseases from OMIM

- THYMIDINE KINASE, MITOCHONDRIAL
 http://omim.org/entry/188250

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_TK2.html
- ClinVar
- HGNC Gene Symbol Report
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:7084
- NCBI Gene
- UniProt
 https://www.uniprot.org/uniprot/O00142

Sources for This Summary

- OMIM: THYMIDINE KINASE, MITOCHONDRIAL
 http://omim.org/entry/188250