THPO gene
thrombopoietin

Normal Function

The THPO gene provides instructions for making a protein called thrombopoietin that promotes the growth and division (proliferation) of cells. This protein attaches to (binds) and turns on (activates) the thrombopoietin receptor, which stimulates several signaling pathways that transmit chemical signals from outside the cell to the cell's nucleus. These pathways are important for controlling the production of blood cells.

Thrombopoietin is especially important for the proliferation of certain blood cells called megakaryocytes, which produce platelets, the cell fragments involved in blood clotting. Research suggests that thrombopoietin signaling may also play a role in the renewal of hematopoietic stem cells, which are stem cells located within the bone marrow that have the potential to develop into red blood cells, white blood cells, and platelets.

Health Conditions Related to Genetic Changes

Essential thrombocythemia

Several mutations in the THPO gene have been found in people with essential thrombocythemia, a condition characterized by an increased number of platelets in the blood. Because platelets are the blood cell fragments involved in blood clotting, abnormal clotting (thrombosis) is common in people with essential thrombocythemia.

THPO gene mutations are found in families with an inherited form of the condition called familial essential thrombocythemia. These mutations affect a region of the gene that usually blocks (inhibits) the production of the thrombopoietin protein (a process called translation). THPO gene mutations lead to increased translation of the protein. The excess protein can abnormally activate the thrombopoietin receptor and the signaling pathways, leading to overproduction of megakaryocytes and increased numbers of platelets. Excess platelets can cause thrombosis, which leads to many signs and symptoms of essential thrombocythemia.
Chromosomal Location
Cytogenetic Location: 3q27.1, which is the long (q) arm of chromosome 3 at position 27.1
Molecular Location: base pairs 184,371,935 to 184,379,688 on chromosome 3 (Homo sapiens Updated Annotation Release 109.20190905, GRCh38.p13) (NCBI)

Other Names for This Gene
• c-mpl ligand
• megakaryocyte colony-stimulating factor
• megakaryocyte growth and development factor
• megakaryocyte stimulating factor
• MGC163194
• MGDF
• MKCSF
• ML
• MPL ligand
• MPLLG
• myeloproliferative leukemia virus oncogene ligand
• TPO
• TPO_HUMAN

Additional Information & Resources
Educational Resources
https://www.ncbi.nlm.nih.gov/books/NBK12518/
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28THPO%5BTIAB%5D%29+OR+%28thrombopoietin%5BTIAB%5D%29%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+360+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- THROMBOPOIETIN
 http://omim.org/entry/600044

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_THPO.html

- ClinVar

- HGNC Gene Symbol Report

- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:7066

- NCBI Gene

- UniProt
 https://www.uniprot.org/uniprot/P40225

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10484635

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9834204

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12135673

- OMIM: THROMBOPOIETIN
 http://omim.org/entry/600044
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9425899

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21478671
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127159/