TH gene
tyrosine hydroxylase

Normal Function

The *TH* gene provides instructions for making the enzyme tyrosine hydroxylase, which is important for normal functioning of the nervous system. Tyrosine hydroxylase takes part in the first step of the pathway that produces a group of hormones called catecholamines. This enzyme helps convert the protein building block (amino acid) tyrosine to a catecholamine called dopamine. Dopamine is also known as a neurotransmitter because it transmits signals between nerve cells in the brain to help control physical movement and emotional behavior. Other catecholamines called norepinephrine and epinephrine are produced from dopamine. Norepinephrine and epinephrine are involved in the autonomic nervous system, which controls involuntary body processes such as the regulation of blood pressure and body temperature.

Health Conditions Related to Genetic Changes

Dopa-responsive dystonia

More than two dozen mutations in the *TH* gene have been found to cause dopa-responsive dystonia. This condition is characterized by a pattern of involuntary muscle contractions (dystonia), tremors, and other uncontrolled movements and usually responds to treatment with a medication called L-Dopa. Most *TH* gene mutations that cause this condition change single protein building blocks (amino acids) in the tyrosine hydroxylase enzyme, resulting in a decrease in functional enzyme. A reduction in normal tyrosine hydroxylase enzyme leads to a decrease in the production of dopamine, which causes the movement problems characteristic of dopa-responsive dystonia. The amount of functional enzyme that is produced is associated with the severity of the signs and symptoms. Less functional enzyme leads to more severe symptoms.

Tyrosine hydroxylase deficiency

More than 20 mutations in the *TH* gene have been identified in people with tyrosine hydroxylase (TH) deficiency. These mutations result in reduced activity of the tyrosine hydroxylase enzyme. As a result, the body produces less dopamine, norepinephrine, and epinephrine. These catecholamines are necessary for normal nervous system function, and changes in their levels contribute to the abnormal movements, nervous system dysfunction, and other neurological problems seen in people with TH deficiency.
Dopa-responsive dystonia is sometimes considered a mild form of tyrosine hydroxylase deficiency. It is uncertain whether they are two separate disorders or part of the same disease spectrum.

Other disorders

Certain common \(TH \) variations (polymorphisms) modify catecholamine production, which affects the risk of developing conditions associated with regulation of the autonomic nervous system. These \(TH \) gene polymorphisms affect the extent to which blood pressure increases with stress and may increase the risk of high blood pressure (hypertension).

One \(TH \) gene polymorphism has been associated with sudden infant death syndrome (SIDS). SIDS is a major cause of death in babies younger than 1 year. It is characterized by sudden and unexplained death, usually during sleep. The polymorphism, called allele *9.3, is the most common \(TH \) gene polymorphism among people of European descent and has been identified in a larger percentage of babies who die from SIDS than in other babies. This version of the gene may affect the regulation of breathing or awakening in infants.

Chromosomal Location

Cytogenetic Location: 11p15.5, which is the short (p) arm of chromosome 11 at position 15.5

Molecular Location: base pairs 2,163,929 to 2,174,081 on chromosome 11 (Homo sapiens Updated Annotation Release 109.20190905, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- DYT5b
- TY3H_HUMAN
- TYH
- tyrosine 3-monooxygenase
Additional Information & Resources

Educational Resources

• Basic Neurochemistry (6th edition, 1999): Tyrosine hydroxylase is the rate-limiting enzyme for the biosynthesis of catecholamines
 https://www.ncbi.nlm.nih.gov/books/NBK27988/#A861

• Neuroscience (second edition, 2001): Regulation of tyrosine hydroxylase by protein phosphorylation (image)
 https://www.ncbi.nlm.nih.gov/books/NBK10990/figure/A576/

Clinical Information from GeneReviews

• Tyrosine Hydroxylase Deficiency
 https://www.ncbi.nlm.nih.gov/books/NBK1437

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28tyrosine+hydroxylase%5BTIAB%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+720+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

• TYROSINE HYDROXYLASE
 http://omim.org/entry/191290

Research Resources

• Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_TH.html

• ClinVar

• HGNC Gene Symbol Report

• Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:7054

• NCBI Gene

• UniProt
 https://www.uniprot.org/uniprot/P07101
Sources for This Summary

- Pearl PL, Taylor JL, Trzcinski S, Sokohl A. The pediatric neurotransmitter disorders. J Child Neurol. 2007 May;22(5):606-16. Review. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17690069

- OMIM: TYROSINE HYDROXYLASE
http://omim.org/entry/191290
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17696123

Reprinted from Genetics Home Reference:

Reviewed: May 2012
Published: October 1, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services