TGFBR1 gene
transforming growth factor beta receptor 1

Normal Function

The TGFBR1 gene provides instructions for making a protein called transforming growth factor-beta (TGF-β) receptor type 1. This receptor transmits signals from the cell surface into the cell through a process called signal transduction. Through this type of signaling, the environment outside the cell affects activities inside the cell such as stimulation of cell growth and division.

To carry out its signaling function, TGF-β receptor type 1 spans the cell membrane, so that one end of the protein projects from the outer surface of the cell (the extracellular domain) and the other end remains inside the cell (the intracellular domain). A protein called TGF-β attaches (binds) to the extracellular domain of TGF-β receptor type 1, which turns on (activates) the receptor and allows it to bind to another receptor on the cell surface. These three proteins form a complex, which triggers signal transduction by activating other proteins in a signaling pathway called the TGF-β pathway.

Signals transmitted by the TGF-β receptor complex trigger various responses by the cell, including the growth and division (proliferation) of cells, the maturation of cells to carry out specific functions (differentiation), cell movement (motility), and controlled cell death (apoptosis). Because TGF-β receptor type 1 helps prevent cells from growing and dividing too rapidly or in an uncontrolled way, it can suppress the formation of tumors.

Health Conditions Related to Genetic Changes

Loeys-Dietz syndrome

More than 35 mutations in the TGFBR1 gene have been found to cause Loeys-Dietz syndrome type I. Loeys-Dietz syndrome affects connective tissue, which gives structure and support to blood vessels, the skeleton, and other parts of the body. This type of Loeys-Dietz syndrome is characterized by blood vessel abnormalities and skeletal deformities. The TGFBR1 gene mutations that cause Loeys-Dietz syndrome are present in one copy of the gene in each cell. Most of these mutations change single protein building blocks (amino acids) in TGF-β receptor type 1, resulting in a receptor with little or no function. Although the receptor has severely reduced function, TGF-β pathway signaling occurs at an even greater intensity than normal. Researchers speculate that the activity of other proteins in this signaling pathway is increased to compensate for the reduction in TGF-β receptor type 1 activity;
however, the exact mechanism responsible for the increase in signaling is unclear. The overactive signaling pathway disrupts development of connective tissue and various body systems and leads to the varied signs and symptoms of Loeys-Dietz syndrome type I.

Familial thoracic aortic aneurysm and dissection

Prostate cancer

Other cancers

More than 10 mutations in the TGFBR1 gene have been found to increase the risk of developing a form of skin cancer called multiple self-healing squamous epithelioma (MSSE). This condition, also known as Ferguson-Smith disease, is characterized by the formation of multiple invasive skin tumors that grow uncontrollably for a few weeks, but then suddenly shrink and die off, leaving a noncancerous scar.

People with MSSE have a mutation in one copy of the TGFBR1 gene in each cell. An additional mutation in the second copy of the TGFBR1 gene is needed for tumors to form in MSSE. The second mutation, which is called a somatic mutation, is found only in the tumor cells and is not inherited. Unlike TGFBR1 gene mutations that cause Loeys-Dietz syndrome type I (described above), the mutations that cause MSSE prevent the production of any protein at all. A complete lack of functional receptor in certain cells results in a total loss of TGF-β pathway signaling and severely reduced tumor suppression, allowing the skin cancers to form. The mechanism responsible for the spontaneous healing of the multiple skin tumors in MSSE is unknown.

Chromosomal Location

Cytogenetic Location: 9q22.33, which is the long (q) arm of chromosome 9 at position 22.33

Molecular Location: base pairs 99,104,038 to 99,154,192 on chromosome 9 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Credit: Genome Decoration Page/NCBI
Other Names for This Gene

- serine/threonine-protein kinase receptor R4
- TBR-i
- TBRI
- TGF-beta receptor type-1
- TGF-beta receptor type I
- TGF-beta type I receptor
- TGFR-1
- TGFR1_HUMAN
- transforming growth factor beta receptor I
- transforming growth factor-beta receptor type I

Additional Information & Resources

Educational Resources

 https://www.ncbi.nlm.nih.gov/books/NBK26822/#A2874

- Molecular Biology of the Cell (fourth edition, 2002): TGFβ signaling (image)
 https://www.ncbi.nlm.nih.gov/books/NBK21526/figure/A7151/

- Molecular Cell Biology (fourth edition, 2000): Loss of TGFβ Signaling Contributes to Abnormal Cell Proliferation and Malignancy
 https://www.ncbi.nlm.nih.gov/books/NBK21526/#A7150

Clinical Information from GeneReviews

- Heritable Thoracic Aortic Disease Overview
 https://www.ncbi.nlm.nih.gov/books/NBK1120

- Loeys-Dietz Syndrome
 https://www.ncbi.nlm.nih.gov/books/NBK1133

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28TGFBR1%5BTIAB%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1080+days%22+AND+5Bdp%5D
Catalog of Genes and Diseases from OMIM

• MULTIPLE SELF-HEALING SQUAMOUS EPITHELIOMA, SUSCEPTIBILITY TO http://omim.org/entry/132800
• TRANSFORMING GROWTH FACTOR-BETA RECEPTOR, TYPE I http://omim.org/entry/190181

Research Resources

• Atlas of Genetics and Cytogenetics in Oncology and Haematology http://atlasgeneticsoncology.org/Genes/GC_TGFBR1.html
• ClinVar https://www.ncbi.nlm.nih.gov/clinvar?term=TGFBR1%5Bgene%5D
• Monarch Initiative https://monarchinitiative.org/gene/NCBIGene:7046
• UniProt https://www.uniprot.org/uniprot/P36897

Sources for This Summary

• OMIM: TRANSFORMING GROWTH FACTOR-BETA RECEPTOR, TYPE I
 http://omim.org/entry/190181

Reprinted from Genetics Home Reference:
 https://ghr.nlm.nih.gov/gene/TGFBR1

Reviewed: March 2017
Published: February 26, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services