TGFBR1

transforming growth factor beta receptor 1

The TGFBR1 gene provides instructions for making a protein called transforming growth factor-beta (TGF-β) receptor type 1. This receptor transmits signals from the cell surface into the cell through a process called signal transduction. Through this type of signaling, the environment outside the cell affects activities inside the cell such as stimulation of cell growth and division.

To carry out its signaling function, TGF-β receptor type 1 spans the cell membrane, so that one end of the protein projects from the outer surface of the cell (the extracellular domain) and the other end remains inside the cell (the intracellular domain). A protein called TGF-β attaches (binds) to the extracellular domain of TGF-β receptor type 1, which turns on (activates) the receptor and allows it to bind to a similar receptor on the cell surface. These three proteins form a complex, which triggers signal transduction by activating other proteins in this signaling pathway.

Signals triggered through the TGF-β receptor complex prompt various responses by the cell, including the growth and division (proliferation) of cells, the maturation of cells to carry out specific functions (differentiation), cell movement (motility), and controlled cell death (apoptosis). Because TGF-β receptor type 1 keeps cells from growing and dividing too rapidly or in an uncontrolled way, it is also important in suppressing the formation of tumors.

Genetics Home Reference provides information about familial thoracic aortic aneurysm and dissection.

More than 30 mutations in the TGFBR1 gene have been found to cause Loeys-Dietz syndrome type I. Loeys-Dietz syndrome affects connective tissue, which gives structure and support to blood vessels, the skeleton, and other parts of the body. This type of Loeys-Dietz syndrome is characterized by blood vessel abnormalities and skeletal deformities. Most of the TGFBR1 gene mutations that cause Loeys-Dietz syndrome change single protein building blocks (amino acids) in TGF-β receptor type 1, resulting in a receptor with little or no function. Although the receptor has severely reduced function, cell signaling occurs at an even greater intensity than normal. Researchers speculate that the activity of proteins in this signaling pathway is increased to compensate for the reduction in TGF-β receptor type 1 activity; however the exact mechanism responsible for the increase in signaling is unclear. The overactive signaling pathway disrupts development of connective tissue and various body systems and leads to the varied signs and symptoms of Loeys-Dietz syndrome type I.

Genetics Home Reference provides information about prostate cancer.

More than 10 mutations in the TGFBR1 gene have been found to increase the risk of developing a form of skin cancer called multiple self-healing squamous epithelioma (MSSE). This condition, also known as Ferguson-Smith disease, is characterized by the formation of multiple invasive skin tumors that grow uncontrollably for a few weeks, but then suddenly shrink and die off, leaving a noncancerous scar.

People with MSSE have a mutation in one copy of the TGFBR1 gene in each cell. In addition, an acquired mutation in the second copy of the TGFBR1 gene is needed for tumors to form. The additional mutation, which is called a somatic mutation, is found only in the tumor cells and is not inherited. The mutations that cause MSSE lead to the production of a receptor with no function or with an altered 3-dimensional shape that impairs its function. A complete lack of functional receptor in certain cells results in reduced signaling that likely diminishes the tumor-suppressing action of TGF-β receptor type 1, allowing the skin cancers to form. The mechanism responsible for the spontaneous healing of the multiple skin cancers in MSSE is unknown.

Cytogenetic Location: 9q22, which is the long (q) arm of chromosome 9 at position 22

Molecular Location: base pairs 99,104,038 to 99,154,192 on chromosome 9 (Homo sapiens Annotation Release 108, GRCh38.p7) (NCBI)

Cytogenetic Location: 9q22, which is the long (q) arm of chromosome 9 at position 22
  • serine/threonine-protein kinase receptor R4
  • TGF-beta receptor type-1
  • TGF-beta receptor type I
  • TGF-beta type I receptor
  • TGFR-1
  • TGFR1_HUMAN
  • transforming growth factor beta receptor I
  • transforming growth factor-beta receptor type I
  • transforming growth factor, beta receptor 1
  • transforming growth factor, beta receptor I (activin A receptor type II-like kinase, 53kD)