TGFB3 gene
transforming growth factor beta 3

Normal Function
The TGFB3 gene provides instructions for producing a protein called transforming growth factor beta-3 (TGFβ-3). This protein is found throughout the body and is required for development before birth and throughout life. To carry out its functions, TGFβ-3 attaches (binds) to receptor proteins on the surface of cells. This binding triggers the transmission of signals within the cell, controlling various cellular activities. As part of a signaling pathway, called the TGF-β pathway, the TGFβ-3 protein helps control the growth and division (proliferation) of cells, the process by which cells mature to carry out specific functions (differentiation), cell movement (motility), and controlled cell death (apoptosis). Because the TGFβ-3 protein keeps cells from growing and dividing too rapidly or in an uncontrolled way, it can suppress the formation of tumors.

The TGFβ-3 protein is especially abundant in tissues that develop into the muscles used for movement (skeletal muscles), and plays a key role in their development. The protein is also involved in the formation of blood vessels, regulation of bone growth, wound healing, and immune system function.

Health Conditions Related to Genetic Changes

Loeys-Dietz syndrome
At least 11 mutations in the TGFB3 gene have been found to cause Loeys-Dietz syndrome type V. This disorder affects connective tissue, which gives structure and support to blood vessels, the skeleton, and many other parts of the body. Loeys-Dietz syndrome type V is characterized by blood vessel abnormalities, heart defects, and skeletal deformities. The TGFB3 gene mutations that cause this condition lead to the production of a TGFβ-3 protein with little or no function. As a result, the protein cannot bind to its receptors. Although the TGFβ-3 protein and its receptors are not bound, TGF-β pathway signaling occurs at an even greater intensity than normal. Researchers speculate that the activity of other proteins in this signaling pathway is increased to compensate for the reduction in TGFβ-3 activity; however, the exact mechanism responsible for the increase in signaling is unclear. The overactive signaling pathway disrupts development of connective tissue and various body systems and leads to the signs and symptoms of Loeys-Dietz syndrome type V.

Arrhythmogenic right ventricular cardiomyopathy
Chromosomal Location

Cytogenetic Location: 14q24.3, which is the long (q) arm of chromosome 14 at position 24.3

Molecular Location: base pairs 75,958,061 to 75,983,011 on chromosome 14 (Homo sapiens Updated Annotation Release 109.20200228, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

• RNHF
• TGF beta 3
• TGF-beta3

Additional Information & Resources

Educational Resources

https://www.ncbi.nlm.nih.gov/books/NBK26822/#A2874

• Molecular Cell Biology (fourth edition, 2000): TGFβ signaling (image)
https://www.ncbi.nlm.nih.gov/books/NBK21526/figure/A7151/

Clinical Information from GeneReviews

• Arrhythmogenic Right Ventricular Cardiomyopathy
https://www.ncbi.nlm.nih.gov/books/NBK1131

• Loeys-Dietz Syndrome
https://www.ncbi.nlm.nih.gov/books/NBK1133
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28TGFB3%5BTIAB%5D%29+OR+%28transforming+growth+factor+beta+3%5BTIAB%5D%29%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- TRANSFORMING GROWTH FACTOR, BETA-3
 http://omim.org/entry/190230

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_TGFB3.html
- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=TGFB3%5Bgene%5D
- HGNC Gene Symbol Report
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:7043
- NCBI Gene
- UniProt
 https://www.uniprot.org/uniprot/P10600

Sources for This Summary

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23824657
Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885154/

OMIM: TRANSFORMING GROWTH FACTOR, BETA-3
http://omim.org/entry/190230

Reprinted from Genetics Home Reference:

Reviewed: March 2017
Published: March 31, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services