STK11 gene
serine/threonine kinase 11

Normal Function

The STK11 gene (also called LKB1) provides instructions for making an enzyme called serine/threonine kinase 11. This enzyme is a tumor suppressor, which means that it helps keep cells from growing and dividing too fast or in an uncontrolled way. This enzyme helps certain types of cells correctly orient themselves within tissues (polarization) and assists in determining the amount of energy a cell uses. This kinase also promotes a type of programmed cell death known as apoptosis. In addition to its role as a tumor suppressor, serine/threonine kinase 11 function appears to be required for normal development before birth.

Health Conditions Related to Genetic Changes

Peutz-Jeghers syndrome

Inherited mutations in the STK11 gene cause Peutz-Jeghers syndrome, a condition characterized by the development of noncancerous growths called hamartomatous polyps in the gastrointestinal tract and a greatly increased risk of developing several types of cancer. More than 340 STK11 gene mutations have been identified in people with this condition. Many of these mutations result in the production of an abnormally short, nonfunctional version of the serine/threonine kinase 11 enzyme. Other mutations change single protein building blocks (amino acids) used to build the enzyme. Mutations in the STK11 gene impair the enzyme's tumor suppressor function, allowing cells to grow and divide without control or order. This uncontrolled cell growth can lead to the formation of hamartomatous polyps and cancerous tumors.

Breast cancer

Inherited changes in the STK11 gene greatly increase the risk of developing breast cancer, as well as other types of cancer, as part of Peutz-Jeghers syndrome (described above). These mutations are thought to account for only a small fraction of all breast cancer cases.

Lung cancer

Ovarian cancer
Other cancers

Noninherited (somatic) mutations in the STK11 gene have been found in various forms of cancer. Somatic mutations are acquired during a person’s lifetime and are present only in certain cells. They do not occur as part of a cancer syndrome. Somatic STK11 gene mutations have been identified in a form of lung cancer called non-small cell lung carcinoma, cervical cancer, colorectal cancer, an aggressive type of skin cancer called melanoma, and pancreatic cancer. These mutations impair the function of serine/threonine kinase 11, which can allow cells to grow and divide uncontrollably and contribute to the formation of a cancerous tumor.

Chromosomal Location

Cytogenetic Location: 19p13.3, which is the short (p) arm of chromosome 19 at position 13.3

Molecular Location: base pairs 1,205,799 to 1,228,435 on chromosome 19 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- LKB1
- PJS
- serine/threonine kinase 11 (Peutz-Jeghers syndrome)
- Serine/threonine-protein kinase 11
- STK11_HUMAN

Additional Information & Resources

Educational Resources

 https://www.ncbi.nlm.nih.gov/books/NBK1826/
- National Cancer Institute: Genetics of Breast and Gynecologic Cancers (PDQ)
Clinical Information from GeneReviews
• Peutz-Jeghers Syndrome
 https://www.ncbi.nlm.nih.gov/books/NBK1266

Scientific Articles on PubMed
• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28STK11%5BTIAB%5D%29+OR+%28serine/threonine+kinase+11%5BTIAB%5D%29+OR+%28LKB1%5BTIAB%5D%29+AND+english%5Bl%5D+AND+human%5Bm%5D+AND+%22last+360+days%22

Catalog of Genes and Diseases from OMIM
• SERINE/THREONINE PROTEIN KINASE 11
 http://omim.org/entry/602216

Research Resources
• Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/STK11ID292.html
• Cancer Genetics Web: STK11
 http://www.cancerindex.org/geneweb/STK11.htm
• ClinVar
• HGNC Gene Symbol Report
 https://www.genenames.org/cgi-bin/gene_symbol_report?q=data/hgnc_data.php&hgnc_id=11389
• Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:6794
• NCBI Gene
• UniProt
 https://www.uniprot.org/uniprot/Q15831

Sources for This Summary
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23587167
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626889/
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9428765
 In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N,
 Mefford HC, Smith RJH, Stephens K, editors. GeneReviews® [Internet]. Seattle (WA): University of
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301443

• National Cancer Institute: Genetics of Breast and Gynecologic Cancers (PDQ)

• Vahtomeri K, Mäkelä TP. Molecular mechanisms of tumor suppression by LKB1. FEBS Lett. 2011
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21192934

• Weissman SM, Weiss SM, Newlin AC. Genetic testing by cancer site: ovary. Cancer J. 2012 Jul-
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22846732

• Wingo SN, Gallardo TD, Akbay EA, Liang MC, Contreras CM, Boren T, Shimamura T, Miller DS,
 Sharpless NE, Bardeesy N, Kwiatkowski DJ, Schorge JO, Wong KK, Castrillon DH. Somatic
 journal.pone.0005137. Epub 2009 Apr 2.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19340305
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2660434/

• Zhuang ZG, Di GH, Shen ZZ, Ding J, Shao ZM. Enhanced expression of LKB1 in breast cancer
 cells attenuates angiogenesis, invasion, and metastatic potential. Mol Cancer Res. 2006 Nov;4(11):
 843-9.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17114342

Reprinted from Genetics Home Reference:

Reviewed: May 2015
Published: November 7, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services