SQSTM1 gene
sequestosome 1

Normal Function

The *SQSTM1* gene provides instructions for making a protein called p62. This protein plays an important role in bone remodeling, a normal process in which old bone is broken down and new bone is created to replace it. The p62 protein helps regulate this process through its role in a chemical signaling pathway that promotes the formation of osteoclasts. Osteoclasts are specialized cells that break down bone tissue during bone remodeling.

Studies suggest that p62 may have other functions in addition to its role in bone remodeling. It may be involved in recycling worn-out cell parts and unneeded proteins (autophagy), the self-destruction of cells (apoptosis), and the body's immune responses and inflammatory reactions.

Health Conditions Related to Genetic Changes

Paget disease of bone

More than 20 mutations in the *SQSTM1* gene have been found to cause Paget disease of bone. Many *SQSTM1* gene mutations change single protein building blocks (amino acids) in the p62 protein. The most common mutation replaces the amino acid proline with the amino acid leucine at protein position 392 (written as Pro392Leu or P392L).

Through a mechanism that is not well understood, *SQSTM1* gene mutations appear to overactivate the chemical signaling pathway that promotes osteoclast formation. The increased signaling stimulates the production of too many osteoclasts and triggers these cells to break down bone abnormally. In people with Paget disease of bone, affected bone is broken down and replaced much faster than usual. When the new bone tissue grows, it is weaker and less organized than normal bone. These problems with bone remodeling cause certain bones to become unusually large, misshapen, and easily broken (fractured). It is unclear why the disease affects some bones but not others.

Amyotrophic lateral sclerosis
Chromosomal Location

Cytogenetic Location: 5q35.3, which is the long (q) arm of chromosome 5 at position 35.3

Molecular Location: base pairs 179,806,393 to 179,838,078 on chromosome 5 (Homo sapiens Updated Annotation Release 109.20200228, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

• A170
• EBI3-associated protein p60
• OSIL
• oxidative stress induced like
• p60
• p62
• p62B
• PDB3
• phosphotyrosine independent ligand for the Lck SH2 domain p62
• SQSTM_HUMAN
• ubiquitin-binding protein p62
• ZIP3

Additional Information & Resources

Educational Resources

• Molecular Biology of the Cell (fourth edition, 2002): Bone Is Continually Remodeled by the Cells Within It
 https://www.ncbi.nlm.nih.gov/books/NBK26889/#A4187
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28SQSTM1%5BTIAB%5D%29+OR+%28sequestosome+1%5BTIAB%5D%29+OR+%28p62%5BTIAB%5D%29%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3600+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- SEQUESTOSOME 1
 http://omim.org/entry/601530

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_SQSTM1.html
- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=SQSTM1%5Bgene%5D
- HGNC Gene Symbol Report
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:8878
- NCBI Gene
- UniProt
 https://www.uniprot.org/uniprot/Q13501

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11992264
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC379146/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17229007

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19257822

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8702753

Reprinted from Genetics Home Reference:
 https://ghr.nlm.nih.gov/gene/SQSTM1

Reviewed: February 2010
Published: April 15, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services