SLC3A1 gene
solute carrier family 3 member 1

Normal Function

The *SLC3A1* gene provides instructions for producing one part (subunit) of a protein made primarily in the kidneys. This subunit joins with another protein subunit, produced from the *SLC7A9* gene, to form a transporter protein complex. During the process of urine formation in the kidneys, this protein complex absorbs particular protein building blocks (amino acids) back into the blood. In particular, the amino acids cystine, ornithine, arginine, and lysine are absorbed back into the blood through this mechanism.

Health Conditions Related to Genetic Changes

Cystinuria

More than 120 mutations in the *SLC3A1* gene have been found to cause cystinuria. Many of these mutations alter a single DNA building block (nucleotide) or insert or delete a small number of nucleotides in the *SLC3A1* gene. These changes lead to an abnormally functioning transporter protein complex, which causes certain amino acids to become concentrated in the urine. Cystine is the only amino acid that forms crystals and stones in the bladder or kidneys, leading to the signs and symptoms of cystinuria.

Other disorders

Some people with cystinuria have large DNA deletions that remove not only the *SLC3A1* gene but one or more neighboring genes. Individuals with these large DNA deletions have the signs and symptoms of cystinuria, but they can also have other features.

Deletions of the *SLC3A1* gene and the neighboring *PREPL* gene cause hypotonia-cystinuria syndrome. In addition to cystinuria, people with this condition have low muscle tone (hypotonia) and poor feeding, which usually improves by early childhood. They may also have droopy eyelids (ptosis), an elongated head (dolichocephaly), and mild intellectual disability. Most people with this condition have short stature.

Deletions of the *SLC3A1* gene, the *PREPL* gene, and the *C2orf34* gene cause atypical hypotonia-cystinuria syndrome. In addition to the symptoms of hypotonia-cystinuria syndrome, individuals with the atypical form have mild to moderate delay in the development of mental and motor skills (psychomotor delay).
Deletions of the \textit{SLC3A1} gene, the \textit{PREPL} gene, the \textit{C2orf34} gene, and the \textit{PPM1B} gene cause 2p21 deletion syndrome. In addition to all the symptoms of the previous syndromes, individuals with 2p21 deletion syndrome have seizures soon after birth, moderate to severe psychomotor delay, and impairments in the process from which cells derive much of their energy (oxidative phosphorylation). People with this condition typically have a characteristic facial appearance with a prominent forehead, long eyelashes, a flat nasal bridge, and abnormally turned ears.

\textbf{Chromosomal Location}

\textbf{Cytogenetic Location:}\ 2p21, which is the short (p) arm of chromosome 2 at position 21
\textbf{Molecular Location:} base pairs 44,275,458 to 44,320,824 on chromosome 2 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Credit: Genome Decoration Page/NCBI

\textbf{Other Names for This Gene}

\begin{itemize}
 \item amino acid transporter 1
 \item ATR1
 \item CSNU1
 \item D2H
 \item NBAT
 \item RBAT
 \item SLC31_HUMAN
 \item solute carrier family 3 (amino acid transporter heavy chain), member 1
 \item solute carrier family 3 (cystine, dibasic and neutral amino acid transporters), member 1
 \item solute carrier family 3 (cystine, dibasic and neutral amino acid transporters, activator of cystine, dibasic and neutral amino acid transport), member 1
 \item solute carrier family 3, member 1
\end{itemize}
Additional Information & Resources

Educational Resources

• National Institute of Diabetes and Digestive and Kidney Diseases: Your Kidneys and How They Work
 https://www.niddk.nih.gov/health-information/kidney-disease/kidneys-how-they-work

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28SLC3A1%5BTIAB%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+Genetic+Phenomena%5BMH%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22+AND+OMIM

Catalog of Genes and Diseases from OMIM

• HYPOTONIA-CYSTINURIA SYNDROME
 http://omim.org/entry/606407

• SOLUTE CARRIER FAMILY 3 (CYSTINE, DIBASIC, AND NEUTRAL AMINO ACID TRANSPORTER), MEMBER 1
 http://omim.org/entry/104614

Research Resources

• Atlas of Genetics and Cytogenetics in Oncology and Haematology

• ClinVar

• HGNC Gene Family: Amylases alpha
 https://www.genenames.org/cgi-bin/genefamilies/set/1648

• HGNC Gene Family: Solute carriers
 https://www.genenames.org/cgi-bin/genefamilies/set/752

• HGNC Gene Symbol Report
 https://www.genenames.org/cgi-bin/gene_symbol_report?q=data/hgnc_data.php&hgnc_id=11025

• Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:6519

• NCBI Gene

• UniProt
 https://www.uniprot.org/uniprot/Q07837
Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18234729

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12239244

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12167606

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15635077
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1735913/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15499206

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15021200

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17579669

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18781961

- OMIM: SOLUTE CARRIER FAMILY 3 (CYSTINE, DIBASIC, AND NEUTRAL AMINO ACID TRANSPORTER), MEMBER 1
 http://omim.org/entry/104614

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14531788

Reprinted from Genetics Home Reference:

Reviewed: January 2009
Published: October 30, 2018