SLC25A20 gene
solute carrier family 25 member 20

Normal Function

The SLC25A20 gene provides instructions for making a protein called carnitine-acylcarnitine translocase (CACT). This protein is essential for fatty acid oxidation, a multistep process that breaks down (metabolizes) fats and converts them into energy. Fatty acid oxidation takes place within mitochondria, which are the energy-producing centers in cells. A group of fats called long-chain fatty acids must be attached to a substance known as carnitine to enter mitochondria. Once these fatty acids are joined with carnitine, the CACT protein transports them into mitochondria. Carnitine is then removed from the long-chain fatty acid and transported back out of mitochondria by the CACT protein. Fatty acids are a major source of energy for the heart and muscles. During periods of fasting, fatty acids are also an important energy source for the liver and other tissues.

Health Conditions Related to Genetic Changes

Carnitine-acylcarnitine translocase deficiency

At least 27 mutations in the SLC25A20 gene have been found to cause carnitine-acylcarnitine translocase (CACT) deficiency. Although these mutations change the structure of the CACT protein in different ways, they all lead to a shortage (deficiency) of the protein. Without enough functional CACT protein, long-chain fatty acids cannot be transported into mitochondria. As a result, these fatty acids are not converted to energy. Reduced energy production can lead to some of the features of CACT deficiency, such as low blood sugar (hypoglycemia) and low levels of the products of fat breakdown (hypoketosis). Fatty acids and long-chain acylcarnitines (fatty acids still attached to carnitine) may also build up in cells and damage the liver, heart, and muscles. This abnormal buildup causes the other signs and symptoms of the disorder.
Chromosomal Location

Cytogenetic Location: 3p21.31, which is the short (p) arm of chromosome 3 at position 21.31

Molecular Location: base pairs 48,856,926 to 48,898,882 on chromosome 3 (Homo sapiens Updated Annotation Release 109.20190607, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- CAC
- CACT
- carnitine-acylcarnitine carrier
- carnitine/acylcarnitine translocase
- MCAT_HUMAN
- solute carrier family 25 (carnitine/acylcarnitine translocase), member 20

Additional Information & Resources

Educational Resources

Scientific Articles on PubMed

- PubMed https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28SLC25A20%5BTIAB%5D%29+OR+%28carnitine+translocase%5BTIAB%5D%29+OR+%28acylcarnitine+translocase%5BTIAB%5D%29+OR+%28carnitine/acylcarnitine+translocase%5BTIAB%5D%29+OR+%28CACT+gene%5BTIAB%5D%29+AND+english%2B%5Bla%5D+AND+human%5Bmh%5D
Catalog of Genes and Diseases from OMIM

- SOLUTE CARRIER FAMILY 25 (CARNITINE/ACYLCARNITINE TRANSLOCASE), MEMBER 20
 http://omim.org/entry/613698

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
- ClinVar
- HGNC Gene Symbol Report
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:788
- NCBI Gene
- UniProt
 https://www.uniprot.org/uniprot/O43772

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12559850
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15159657
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15365988
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15057979
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16919490
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16602102
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2557099/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11257506

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15363639

Reprinted from Genetics Home Reference:

Reviewed: November 2010
Published: July 9, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services