SLC25A13 gene
solute carrier family 25 member 13

Normal Function

The *SLC25A13* gene provides instructions for making a protein called citrin. This protein is active chiefly in the liver, kidneys, and heart. Within the cells of these organs, citrin is involved in transporting molecules into and out of energy-producing structures called mitochondria. Specifically, citrin carries a protein building block (amino acid) called glutamate into mitochondria and transports the amino acid aspartate out of mitochondria as part of a process called the malate-aspartate shuttle.

An adequate supply of aspartate must be transported out of mitochondria to participate in a process called the urea cycle. The urea cycle is a sequence of chemical reactions that takes place in liver cells. These reactions process excess nitrogen that is generated as the body uses proteins. The excess nitrogen is used to make a compound called urea, which is excreted from the body in urine.

Citrin participates in several other important cellular functions as part of the malate-aspartate shuttle. This protein plays a role in producing and breaking down simple sugars and making proteins. It is also involved in the production of nucleotides, which are the building blocks of DNA and its chemical cousin, RNA.

Health Conditions Related to Genetic Changes

Citrullinemia

More than 20 mutations in the *SLC25A13* gene have been identified in people with adult-onset type II citrullinemia. This condition causes neurological problems, such as confusion, restlessness, irritability, and seizures, usually beginning in adulthood. Almost all of the identified mutations lead to the production of an unstable citrin protein that is quickly broken down or an abnormally short, nonfunctional version of the protein.

A lack of functional citrin blocks the malate-aspartate shuttle, including the transport of aspartate out of mitochondria. This loss of citrin inhibits the normal production of proteins and nucleotides. It also reduces the amount of aspartate available to take part in the urea cycle. As a result, the liver cannot effectively process excess nitrogen into urea. A disruption in the urea cycle allows nitrogen (in the form of ammonia) and other byproducts of the urea cycle (such as citrulline) to build up in the bloodstream. Ammonia is toxic, especially to the nervous system, which helps explain the development of abnormal behaviors and other neurological problems in people with adult-onset type II citrullinemia.
Mutations in the \textit{SLC25A13} gene also have been found in infants with a liver disorder called neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). This liver disorder is also known as neonatal-onset type II citrullinemia. NICCD blocks the flow of bile (a digestive fluid produced by the liver) and prevents the body from processing certain nutrients properly. Ammonia does not build up in the bloodstream of infants with NICCD, and the signs and symptoms typically go away within a year. In rare cases, these individuals develop signs and symptoms of another condition called failure to thrive and dyslipidemia caused by citrin deficiency (FTTDCD) after recovering from NICCD. Many individuals with NICCD or FTTDCD have the same mutations in the \textit{SLC25A13} gene as people with adult-onset type II citrullinemia. Years or even decades later, some people who had NICCD or FTTDCD develop the features of adult-onset type II citrullinemia.

\textbf{Chromosomal Location}

\begin{itemize}
 \item \textbf{Cytogenetic Location:} 7q21.3, which is the long (q) arm of chromosome 7 at position 21.3
 \item \textbf{Molecular Location:} base pairs 96,120,220 to 96,322,147 on chromosome 7 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)
\end{itemize}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{chromosome_location.png}
\caption{Chromosomal Location of SLC25A13}
\end{figure}

\textbf{Credit:} Genome Decoration Page/NCBI

\textbf{Other Names for This Gene}

\begin{itemize}
 \item ARALAR2
 \item calcium-binding mitochondrial carrier protein Aralar2
 \item CITRIN
 \item CMC2_HUMAN
 \item CTLN2
 \item mitochondrial aspartate glutamate carrier 2
 \item solute carrier family 25 (aspartate/glutamate carrier), member 13
\end{itemize}
Additional Information & Resources

Educational Resources

• Chapter 23.4: Ammonium Ion Is Converted Into Urea in Most Terrestrial Vertebrates (Biochemistry, fifth edition, 2002)
 https://www.ncbi.nlm.nih.gov/books/NBK22450/

Clinical Information from GeneReviews

• Citrin Deficiency
 https://www.ncbi.nlm.nih.gov/books/NBK1181

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28SLC25A13%5BTIAB%5D%29+OR+%28solute+carrier+family+25,+member+13%5BTIAB%5D%29%29+OR+%28%28ARALAR2%5BTIAB%5D%29+OR+%28CITRIN%5BTIAB%5D%29+OR+%28CTLN2%5BTIAB%5D%29%29+AND+%28%28Genes%5BMH%5D%29%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+2160+days%22+AND

Catalog of Genes and Diseases from OMIM

• CITRULLINEMIA, TYPE II, NEONATAL-ONSET
 http://omim.org/entry/605814

• SOLUTE CARRIER FAMILY 25 (CITRIN), MEMBER 13
 http://omim.org/entry/603859

Research Resources

• Atlas of Genetics and Cytogenetics in Oncology and Haematology

• ClinVar

• HGNC Gene Symbol Report

• Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:10165

• NCBI Gene

• UniProt
 https://www.uniprot.org/uniprot/Q9UJS0
Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14680984

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16059747

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15050970

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16199199

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12602510

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12111366

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21242115

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24069319
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777997/

Reprinted from Genetics Home Reference:

Reviewed: May 2017
Published: April 16, 2019