SGSH gene
N-sulfoglucosamine sulfohydrolase

Normal Function

The *SGSH* gene provides instructions for producing an enzyme called sulfamidase. This enzyme is located in lysosomes, compartments within cells that digest and recycle different types of molecules. Sulfamidase is involved in the step-wise breakdown of large molecules called glycosaminoglycans (GAGs). GAGs are composed of sugar molecules that are linked together to form a long string. To break down these large molecules, individual sugars are removed one at a time from one end of the molecule. Sulfamidase removes a chemical group known as a sulfate from a sugar called glucosamine when it is at the end of the GAG chain.

Health Conditions Related to Genetic Changes

Mucopolysaccharidosis type III

More than 80 mutations in the *SGSH* gene have been found to cause mucopolysaccharidosis type IIIA (MPS IIIA). Most of these mutations change single DNA building blocks (nucleotides) in the gene. All of the mutations that cause MPS IIIA reduce or eliminate the function of sulfamidase.

The lack of sulfamidase activity disrupts the breakdown of a subset of GAGs called heparan sulfate. As a result, partially broken down heparan sulfate accumulates within lysosomes. Researchers believe that the accumulation of GAGs interferes with the functions of other proteins inside the lysosomes and disrupts the normal functions of cells. It is unknown why the buildup of heparan sulfate mostly affects the central nervous system in MPS IIIA.
Chromosomal Location

Cytogenetic Location: 17q25.3, which is the long (q) arm of chromosome 17 at position 25.3

Molecular Location: base pairs 80,200,668 to 80,220,400 on chromosome 17 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

• heparan N-sulfatase
• heparan sulfate sulfatase
• HSS
• N-sulphoglucosamine sulphohydrolase
• N-sulphoglucosamine sulphohydrolase precursor
• SFMD
• SPHM_HUMAN
• sulfamidase
• sulfoglucosamine sulfamidase
• sulphamidase

Additional Information & Resources

Educational Resources

• Eurekah Bioscience Collection: Defects in Glycosaminoglycan Degradation (Mucopolysaccharidoses)
 https://www.ncbi.nlm.nih.gov/books/NBK6177/#A53462
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28SGSH%5BTIAB%5D%29+OR+%28N-sulfoglucosamine+sulfohydrolase%5BTIAB%5D%29%29+OR+%28%28heparan+sulfate+sulfatase%5BTIAB%5D%29+OR+%28MPS3A%5BTIAB%5D%29+OR+%28N-sulphoglucosamine+sulphohydrolase%5BTIAB%5D%29+OR+%28sulphamidase%5BTIAB%5D%29+OR+%28heparan+N-sulfatase%5BTIAB%5D%29+OR+%28sulfamidase%5BTIAB%5D%29%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+human%5Bmh%5D+AND+%22last+3600+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- N-SULFOGLUCOSAMINE SULFOHYDROLASE
 http://omim.org/entry/605270

Research Resources

- ClinVar

- HGNC Gene Family: Sulfatases
 https://www.genenames.org/cgi-bin/genefamilies/set/410

- HGNC Gene Symbol Report

- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:6448

- NCBI Gene

- UniProt
 https://www.uniprot.org/uniprot/P51688

Sources for This Summary

- OMIM: N-SULFOGLUCOSAMINE SULFOHYDROLASE
 http://omim.org/entry/605270
- Valstar MJ, Ruijter GJ, van Diggelen OP, Poorthuis BJ, Wijburg FA. Sanfilippo syndrome: a mini-
 Apr 4. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18392742

Reprinted from Genetics Home Reference:

Reviewed: August 2010
Published: November 27, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services