SFTPB gene
surfactant protein B

Normal Function

The *SFTPB* gene provides instructions for making a protein called surfactant protein-B (SP-B). This protein is one of four proteins (each produced from a different gene) in surfactant, a mixture of certain fats (called phospholipids) and proteins that lines the lung tissue and makes breathing easy. Without normal surfactant, the tissue surrounding the air sacs in the lungs (the alveoli) sticks together after exhalation (because of a force called surface tension), causing the alveoli to collapse. As a result, filling the lungs with air on each breath becomes very difficult, and the delivery of oxygen to the body is impaired. Surfactant lowers surface tension, easing breathing and avoiding lung collapse. The SP-B protein helps spread the surfactant across the surface of the lung tissue, aiding in the surface tension-lowering property of surfactant.

The phospholipids and proteins that make up surfactant are packaged in cellular structures known as lamellar bodies, which are found in specialized lung cells. The surfactant proteins must go through several processing steps to mature and become functional; some of these steps occur in lamellar bodies. The SP-B protein plays a role in the formation of lamellar bodies and, thus, affects the processing of a surfactant protein called surfactant protein-C (SP-C).

Health Conditions Related to Genetic Changes

Surfactant dysfunction

More than 30 mutations in the *SFTPB* gene that cause surfactant dysfunction have been identified. Surfactant dysfunction due to *SFTPB* gene mutations (often called SP-B deficiency) causes severe, often fatal breathing problems in newborns. These mutations lead to partial or complete loss of mature SP-B, resulting in abnormal composition of surfactant and decreased surfactant function. In addition, lamellar body formation is impaired. The lack of normal lamellar bodies leads to abnormal processing of SP-C, resulting in a reduction of mature SP-C and a buildup of unprocessed forms of SP-C. The loss of functional surfactant raises surface tension in the alveoli, causing difficulty breathing and collapse of the lungs. The combination of SP-B and SP-C dysfunction may explain why the signs and symptoms of SP-B deficiency are so severe.
Chromosomal Location

Cytogenetic Location: 2p11.2, which is the short (p) arm of chromosome 2 at position 11.2

Molecular Location: base pairs 85,657,317 to 85,668,741 on chromosome 2 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

![Chromosome 2 Diagram](image)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- 6 kDa protein
- 18 kDa pulmonary-surfactant protein
- PSP-B
- PSPB_HUMAN
- pulmonary surfactant-associated protein B
- pulmonary surfactant-associated proteolipid SPL(Phe)
- SFTP3
- SMDP1
- SP-B

Additional Information & Resources

Educational Resources

 https://www.ncbi.nlm.nih.gov/books/NBK26875/#A4114
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28SFTPB%5BTIAB%5D%29+OR+%28surfactant+protein+B%5BTIAB%5D%29%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- SURFACTANT, PULMONARY-ASSOCIATED PROTEIN B
 http://omim.org/entry/178640

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org Genes/GC_SFTPB.html

- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=SFTP%5Bgene%5D

- HGNC Gene Symbol Report

- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:6439

- NCBI Gene

- UniProt
 https://www.uniprot.org/uniprot/P07988

Sources for This Summary

- OMIM: SURFACTANT, PULMONARY-ASSOCIATED PROTEIN B
 http://omim.org/entry/178640
