SCN9A gene
sodium voltage-gated channel alpha subunit 9

Normal Function

The *SCN9A* gene belongs to a family of genes that provide instructions for making sodium channels. These channels, which transport positively charged sodium atoms (sodium ions) into cells, play a key role in a cell's ability to generate and transmit electrical signals.

The *SCN9A* gene provides instructions for making one part (the alpha subunit) of a sodium channel called NaV1.7. NaV1.7 sodium channels are found in nerve cells called nociceptors that transmit pain signals. Nociceptors are part of the peripheral nervous system, which connects the brain and spinal cord to cells that detect sensations such as touch, smell, and pain. Nociceptors are primarily involved in transmitting pain signals. The centers of nociceptors, known as the cell bodies, are located in a part of the spinal cord called the dorsal root ganglion. Fibers called axons extend from the cell bodies, reaching throughout the body to receive sensory information. Axons transmit the information back to the dorsal root ganglion, which then sends it to the brain. NaV1.7 sodium channels are also found in olfactory sensory neurons, which are nerve cells in the nasal cavity that transmit smell-related signals to the brain.

Health Conditions Related to Genetic Changes

Congenital insensitivity to pain

At least 13 mutations in the *SCN9A* gene have been found to cause congenital insensitivity to pain, a condition that inhibits the ability to perceive physical pain. The *SCN9A* gene mutations that cause congenital insensitivity to pain create a premature stop signal in the instructions for making the alpha subunit of the NaV1.7 sodium channel. As a result, a shortened, nonfunctional subunit is produced which cannot be incorporated into the channel, leading to a loss of functional NaV1.7 sodium channels. The loss of these channels impairs the transmission of pain signals from the site of injury to the brain, causing those affected to be insensitive to pain. Loss of this channel in olfactory sensory neurons likely impairs the transmission of smell-related signals to the brain, leading to a complete loss of the sense of smell (anosmia).

Erythromelalgia

More than 10 mutations in the *SCN9A* gene have been found to cause erythromelalgia, a condition characterized by episodes of pain, redness, and swelling in various parts of the body, particularly the hands and feet. All identified mutations change one protein building block (amino acid) in the NaV1.7 sodium channel. These
mutations result in a NaV1.7 sodium channel that opens more easily than usual and stays open longer than normal, increasing the flow of sodium ions that produce nerve impulses within nociceptors. This increase in sodium ions enhances transmission of pain signals, leading to the signs and symptoms of erythromelalgia.

Paroxysmal extreme pain disorder

Approximately 10 mutations in the SCN9A gene have been found to cause paroxysmal extreme pain disorder. This condition is characterized by severe pain attacks accompanied by skin redness and warmth (flushing) and, sometimes, seizures and changes in breathing and heart rate. The mutations that cause this condition change single amino acids in the alpha subunit of the NaV1.7 sodium channel. As a result, the sodium channel does not completely close when it is turned off, allowing sodium ions to flow abnormally into nociceptors. This increase in sodium ions enhances transmission of pain signals, leading to the pain attacks experienced by people with paroxysmal extreme pain disorder.

Small fiber neuropathy

Mutations in the SCN9A gene account for approximately 30 percent of cases of small fiber neuropathy, a condition characterized by severe pain attacks and a reduced ability to differentiate between hot and cold. The mutations that cause this condition change single amino acids in the alpha subunit of the NaV1.7 sodium channel. As a result of the altered alpha subunit, the sodium channel does not completely close when it is turned off, allowing sodium ions to flow abnormally into nociceptors. This increase in sodium ions enhances transmission of pain signals. In this condition, the small fibers that extend from the nociceptors and transmit pain signals (axons) degenerate over time. The cause of this degeneration is unknown, but it likely accounts for signs and symptoms such as the loss of temperature differentiation.

Genetic epilepsy with febrile seizures plus

Hereditary sensory and autonomic neuropathy type II

Other disorders

At least three mutations in the SCN9A gene have been found in a group of people affected with febrile seizures, which are seizures that are triggered by a high fever. Febrile seizures are the most common type of seizures in young children, affecting 2 to 5 percent of children in Europe and North America. Children who have febrile seizures have a 2 to 9 percent chance of developing non-fever-related seizures later in life. When febrile seizures are associated with mutations in the SCN9A gene, the condition is known as familial febrile seizures 3B. If these individuals go on to develop seizures without fevers, the condition is then known as generalized epilepsy with febrile seizures plus, type 7. The mutations that cause these conditions change single
amino acids in the alpha subunit of the NaV1.7 sodium channel. It is unknown how a change in the sodium channel leads to febrile seizures.

Variants in the SCN9A gene, when coupled with mutations in another gene called SCN1A, alter the progression of a seizure disorder called Dravet syndrome in some individuals. Dravet syndrome is characterized by convulsive seizures in infancy, followed in childhood by absence seizures, which cause loss of consciousness for short periods. In mid-childhood, the seizures change to the generalized tonic-clonic type, which involve muscle rigidity, convulsions, and loss of consciousness. Generalized tonic-clonic seizures are also associated with prolonged episodes of seizure activity known as nonconvulsive status epilepticus. These episodes can cause confusion and a loss of alertness lasting from hours to weeks. SCN1A gene mutations are the most common cause of Dravet syndrome, but when an affected individual also has a SCN9A gene change, which might not otherwise cause health problems, the signs and symptoms of Dravet syndrome are more severe. For example, individuals with both SCN1A and SCN9A gene changes may have status epilepticus in infancy and experience a variety of seizures at any time. It is unknown how SCN9A gene changes contribute to the signs and symptoms of Dravet syndrome.

Chromosomal Location

Cytogenetic Location: 2q24.3, which is the long (q) arm of chromosome 2 at position 24.3

Molecular Location: base pairs 166,195,185 to 166,375,987 on chromosome 2 (Homo sapiens Updated Annotation Release 109.20190607, GRCh38.p13) (NCBI)

Other Names for This Gene

- hNE
- Nav1.7
- NE-NA
- NENA
- PN1
• SCN9A_HUMAN
• sodium channel, voltage gated, type IX alpha subunit
• sodium channel, voltage-gated, type IX, alpha
• sodium channel, voltage-gated, type IX, alpha polypeptide
• sodium channel, voltage-gated, type IX, alpha subunit
• voltage-gated sodium channel alpha subunit Nav1.7

Additional Information & Resources

Educational Resources
• Washington University, St. Louis Neuromuscular Disease Center: Voltage-Gated Sodium Channels https://neuromuscular.wustl.edu/mother/chan.html#nachvg

Clinical Information from GeneReviews
• Congenital Insensitivity to Pain Overview https://www.ncbi.nlm.nih.gov/books/NBK481553

Scientific Articles on PubMed
• PubMed
https://www.ncbi.nlm.nih.gov/pubmed?term=%28SCN9A%5BTIAB%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22+AND+5Bdp%5D

Catalog of Genes and Diseases from OMIM
• EPILEPTIC ENCEPHALOPATHY, EARLY INFANTILE, 6 http://omim.org/entry/607208
• GENERALIZED EPILEPSY WITH FEBRILE SEIZURES PLUS, TYPE 7 http://omim.org/entry/613863
• SODIUM CHANNEL, VOLTAGE-GATED, TYPE IX, ALPHA SUBUNIT http://omim.org/entry/603415
Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_SCN9A.html
- ClinVar
- HGNC Gene Symbol Report
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:6335
- NCBI Gene
- UniProt
 https://www.uniprot.org/uniprot/Q15858

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20146699

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17470132

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22803682

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22345085
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281474/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20101409

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20351042
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901972/

• OMIM: SODIUM CHANNEL, VOLTAGE-GATED, TYPE IX, ALPHA SUBUNIT
 http://omim.org/entry/603415

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19763161
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2730533/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17167466

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21490662

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18070139

Reprinted from Genetics Home Reference:

page 6