PML gene
promyelocytic leukemia

Normal Function

The PML gene provides instructions for a protein that acts as a tumor suppressor, which means it prevents cells from growing and dividing too rapidly or in an uncontrolled way. The PML protein is found in distinct structures in the nucleus of a cell called PML nuclear bodies (PML-NBs). In the PML-NBs, the PML protein interacts with other proteins that are involved in cell growth and division (proliferation) and self-destruction (apoptosis). The PML protein is able to block cell proliferation and induce apoptosis in combination with other proteins. Researchers believe that the structure of the PML-NBs is required for blocking proliferation and inducing apoptosis.

Health Conditions Related to Genetic Changes

Acute promyelocytic leukemia

Gene mutations can be acquired during a person's lifetime and are present only in certain cells. These mutations are called somatic mutations, and they are not inherited. A somatic mutation involving the PML gene causes acute promyelocytic leukemia, a cancer of the blood forming tissue (bone marrow). Acute promyelocytic leukemia is characterized by an accumulation of immature white blood cells, called promyelocytes, in the bone marrow. A rearrangement (translocation) of genetic material between chromosomes 15 and 17, written as t(15;17), fuses part of the PML gene on chromosome 15 with part of another gene on chromosome 17 called RARA. The protein produced from this fused gene, PML-RARα, functions differently than the protein products of the normal PML and RARA genes.

The PML-RARα protein does not localize to the PML-NBs, and the structures do not form properly. The PML-RARα protein is unable to block cell proliferation or induce apoptosis.

Additionally, the function of the RARα protein, the product of the RARA gene, is disrupted. Normally, this protein is involved in the regulation of gene transcription, which is the first step in protein production. Specifically, this protein helps control the transcription of certain genes important in the maturation (differentiation) of white blood cells beyond the promyelocyte stage. However, the PML-RARα protein blocks (represses) gene transcription.

The PML-RARα protein allows abnormal cell proliferation and blocks the differentiation of white blood cells at the promyelocyte stage. As a result, excess
promyelocytes accumulate in the bone marrow and normal white blood cells cannot form, leading to acute promyelocytic leukemia.

Chromosomal Location

Cytogenetic Location: 15q24.1, which is the long (q) arm of chromosome 15 at position 24.1

Molecular Location: base pairs 73,994,673 to 74,047,819 on chromosome 15 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- MYL
- promyelocytic leukemia protein
- promyelocytic leukemia, inducer of
- RING finger protein 71
- RNF71
- TRIM19
- tripartite motif protein TRIM19

Additional Information & Resources

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28PML%5BTI%5D%29+AND+%28%5BGene%5D%5D%29+AND+human%5B5D+AND+%22last+1440+days%22+AND+%5BMH%5D+AND+%5BPhenomena%5D+AND+%5BGenetic%5D+AND+%5B5BMH%5D+AND+%5B50%5D+AND+%5B5B5%5D+AND+%5B5B2%5D+AND+%5B5B1%5D+AND+%5B5BP%5D+AND+%5B5D+AND+%5B5Bdp%5D

Catalog of Genes and Diseases from OMIM

- ACUTE PROMYEOLOCYTIC LEUKEMIA, INDUCER OF
 http://omim.org/entry/102578
Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/PMLID41.html
- HGNC Gene Family: Ring finger proteins
 https://www.genenames.org/cgi-bin/genefamilies/set/58
- HGNC Gene Family: Tripartite motif containing
 https://www.genenames.org/cgi-bin/genefamilies/set/59
- HGNC Gene Symbol Report
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:5371
- NCBI Gene
- UniProt
 https://www.uniprot.org/uniprot/P29590

Sources for This Summary

- OMIM: ACUTE PROMYELOCYTIC LEUKEMIA, INDUCER OF
 http://omim.org/entry/102578
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12357341
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11257111
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11832207
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11704847
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1652369

Reprinted from Genetics Home Reference:

Reviewed: April 2011
Published: November 20, 2018