Your Guide to Understanding Genetic Conditions

PEX1 gene
peroxisomal biogenesis factor 1

Normal Function

The PEX1 gene provides instructions for making a protein called peroxisomal biogenesis factor 1 (Pex1p), which is part of a group of proteins called peroxins. Peroxins are essential for the formation and normal functioning of cell structures called peroxisomes. Peroxisomes are sac-like compartments that contain enzymes needed to break down many different substances, including fatty acids and certain toxic compounds. They are also important for the production of fats (lipids) used in digestion and in the nervous system. Peroxins assist in the formation (biogenesis) of peroxisomes by producing the membrane that separates the peroxisome from the rest of the cell and by importing enzymes into the peroxisome. Pex1p enables other peroxins to bring enzymes into the peroxisome.

Health Conditions Related to Genetic Changes

Zellweger spectrum disorder

At least 114 mutations in the PEX1 gene have been identified in people with Zellweger spectrum disorder, which is a group of conditions that have overlapping signs and symptoms and affect many parts of the body. The conditions' features, which vary in severity, can include weak muscle tone (hypotonia), developmental delay, and vision and hearing problems. Mutations in the PEX1 gene are the most common cause of Zellweger spectrum disorder and are found in nearly 70 percent of affected individuals.

There are two common PEX1 gene mutations found in people with Zellweger spectrum disorder. One mutation replaces the protein building block (amino acid) glycine with the amino acid aspartic acid at position 843 in Pex1p (written as Gly843Asp or G843D). This mutation leads to reduced levels of the protein. Individuals who have the G843D mutation tend to have signs and symptoms that are at the less-severe end of the condition spectrum. The other common mutation, which is known as the 1700fs mutation, leads to the production of an abnormally short, nonfunctional Pex1p. People who have the 1700fs mutation often have signs and symptoms that are at the severe end of the condition spectrum.

Mutations in the PEX1 gene that cause Zellweger spectrum disorder reduce or eliminate the activity of the Pex1p protein. Without enough functional Pex1p, enzymes are not properly imported into peroxisomes. As a result, cells contain empty peroxisomes that cannot carry out their usual functions. The severe end of the condition spectrum is caused by the absence of functional peroxisomes within cells.
The less severe end of the condition spectrum results from mutations that allow some peroxisomes to form.

Chromosomal Location

Cytogenetic Location: 7q21.2, which is the long (q) arm of chromosome 7 at position 21.2

Molecular Location: base pairs 92,487,023 to 92,528,531 on chromosome 7 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- peroxin1
- peroxisome biogenesis disorder protein 1
- PEX1_HUMAN
- Pex1p
- ZWS1

Additional Information & Resources

Educational Resources

- Basic Neurochemistry (sixth edition, 1999): Peroxisomal Disease
 https://www.ncbi.nlm.nih.gov/books/NBK28022/

Clinical Information from GeneReviews

- Zellweger Spectrum Disorder
 https://www.ncbi.nlm.nih.gov/books/NBK1448
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28PEX1%5BTIAB%5D%29+OR+%28peroxin1%5BALL%5D%29+OR+%28Pex1p%5BALL%5D%29%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3600+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- PEROXISOME BIOGENESIS FACTOR 1
 http://omim.org/entry/602136

Research Resources

- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=PEX1%5Bgene%5D

- HGNC Gene Family: AAA ATPases
 https://www.genenames.org/cgi-bin/genefamilies/set/413

- HGNC Gene Family: Peroxins
 https://www.genenames.org/cgi-bin/genefamilies/set/957

- HGNC Gene Symbol Report

- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:5189

- NCBI Gene

- UniProt
 https://www.uniprot.org/uniprot/O43933

Sources for This Summary

• OMIM: PEROXISOME BIOGENESIS FACTOR 1
 http://omim.org/entry/602136

• Rosenkranz K, Birschmann I, Grunau S, Girzalsky W, Kunau WH, Erdmann R. Functional
 association of the AAA complex and the peroxisomal importomer. FEBS J. 2006 Aug;273(16):
 3804-15.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16911527

• Rosewich H, Ohlenbusch A, Gärtner J. Genetic and clinical aspects of Zellweger spectrum patients
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16141001
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1736134/

• Steinberg SJ, Raymond GV, Braverman NE, Moser AB. Peroxisome Biogenesis Disorders,
 Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH,
 Stephens K, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle;
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301621

• Thoms S, Erdmann R. Peroxisomal matrix protein receptor ubiquitination and recycling. Biochim
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17028012

• Wanders RJ, Waterham HR. Peroxisomal disorders I: biochemistry and genetics of peroxisome
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15679822

Reprinted from Genetics Home Reference:
 https://ghr.nlm.nih.gov/gene/PEX1

Reviewed: June 2015
Published: November 13, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services