PEX1

peroxisomal biogenesis factor 1

The PEX1 gene provides instructions for making a protein called peroxisomal biogenesis factor 1 (Pex1p), which is part of a group of proteins called peroxins. Peroxins are essential for the formation and normal functioning of cell structures called peroxisomes. Peroxisomes are sac-like compartments that contain enzymes needed to break down many different substances, including fatty acids and certain toxic compounds. They are also important for the production of fats (lipids) used in digestion and in the nervous system. Peroxins assist in the formation (biogenesis) of peroxisomes by producing the membrane that separates the peroxisome from the rest of the cell and by importing enzymes into the peroxisome. Pex1p enables other peroxins to bring enzymes into the peroxisome.

At least 114 mutations in the PEX1 gene have been identified in people with Zellweger spectrum disorder, which is a group of conditions that have overlapping signs and symptoms and affect many parts of the body. The conditions' features, which vary in severity, can include weak muscle tone (hypotonia), developmental delay, and vision and hearing problems. Mutations in the PEX1 gene are the most common cause of Zellweger spectrum disorder and are found in nearly 70 percent of affected individuals.

There are two common PEX1 gene mutations found in people with Zellweger spectrum disorder. One mutation replaces the protein building block (amino acid) glycine with the amino acid aspartic acid at position 843 in Pex1p (written as Gly843Asp or G843D). This mutation leads to reduced levels of the protein. Individuals who have the G843D mutation tend to have signs and symptoms that are at the less-severe end of the condition spectrum. The other common mutation, which is known as the 1700fs mutation, leads to the production of an abnormally short, nonfunctional Pex1p. People who have the 1700fs mutation often have signs and symptoms that are at the severe end of the condition spectrum.

Mutations in the PEX1 gene that cause Zellweger spectrum disorder reduce or eliminate the activity of the Pex1p protein. Without enough functional Pex1p, enzymes are not properly imported into peroxisomes. As a result, cells contain empty peroxisomes that cannot carry out their usual functions. The severe end of the condition spectrum is caused by the absence of functional peroxisomes within cells. The less severe end of the condition spectrum results from mutations that allow some peroxisomes to form.

Cytogenetic Location: 7q21.2, which is the long (q) arm of chromosome 7 at position 21.2

Molecular Location: base pairs 92,487,023 to 92,528,531 on chromosome 7 (Homo sapiens Annotation Release 108, GRCh38.p7) (NCBI)

Cytogenetic Location: 7q21.2, which is the long (q) arm of chromosome 7 at position 21.2
  • peroxin1
  • peroxisome biogenesis disorder protein 1
  • PEX1_HUMAN
  • Pex1p
  • ZWS1