OBSL1 gene
obscurin like 1

Normal Function

The \textit{OBSL1} gene provides instructions for making a protein that is thought to help maintain normal levels of another protein called cullin-7, which is produced from the \textit{CUL7} gene. The cullin-7 protein plays a role in the ubiquitin-proteasome system, which is the cell machinery that breaks down (degrades) unwanted proteins.

Cullin-7 helps assemble a complex known as an E3 ubiquitin ligase. This complex tags damaged and excess proteins with molecules called ubiquitin. Ubiquitin serves as a signal to specialized cell structures known as proteasomes, which attach (bind) to the tagged proteins and degrade them. The ubiquitin-proteasome system acts as the cell's quality control system by disposing of damaged, misshapen, and excess proteins. This system also regulates the level of proteins involved in several critical cell activities such as the timing of cell division and growth. In particular, the OBSL1 protein and cullin-7 are thought to help regulate proteins involved in the body's response to growth hormones, although their specific role in this process is unknown.

Health Conditions Related to Genetic Changes

\textbf{3-M syndrome}

At least 29 mutations in the \textit{OBSL1} gene have been identified in people with 3-M syndrome, a disorder that causes skeletal abnormalities including short stature (dwarfism) and unusual facial features. Most of these mutations substitute one protein building block (amino acid) for another amino acid in the OBSL1 protein or result in an OBSL1 protein that is abnormally short and nonfunctional.

Mutations in the \textit{OBSL1} gene likely lead to reduced cullin-7 protein levels, preventing cullin-7 from bringing together the components of the E3 ubiquitin ligase complex and interfering with the process of tagging unneeded proteins for degradation. The body's response to growth hormones may be impaired as a result. However, the specific relationship between \textit{OBSL1} gene mutations and the signs and symptoms of 3-M syndrome are unknown.
Chromosomal Location

Cytogenetic Location: 2q35, which is the long (q) arm of chromosome 2 at position 35
Molecular Location: base pairs 219,549,408 to 219,571,573 on chromosome 2 (Homo sapiens Updated Annotation Release 109.20190905, GRCh38.p13) (NCBI)

Other Names for This Gene

- KIAA0657
- obscurin-like protein 1 isoform 1 precursor
- obscurin-like protein 1 isoform 2 precursor
- obscurin-like protein 1 isoform 3 precursor

Additional Information & Resources

Educational Resources

 https://www.ncbi.nlm.nih.gov/books/NBK9957/#A1233

Clinical Information from GeneReviews

- Three M Syndrome
 https://www.ncbi.nlm.nih.gov/books/NBK1481

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28%5BOSL1%5BTIAB%5D%29+OR+%28obscurin+like+1%5BTIAB%5D%29+OR+%28KIAA0657%5BTIAB%5D%29+OR+%28obscurin-like+protein+1+iso+1%5BTIAB%5D%29+OR+%28obscurin-like+protein+1+iso+2%5BTIAB%5D%29+OR+%28obscurin-like+protein+1+iso+3%5BTIAB%5D%29%29+AND+%28%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29+AND+human%5Bmh%5D+AND%22last+3600+days%22%5Bdp%5D
Catalog of Genes and Diseases from OMIM

• OBSCURIN-LIKE 1
 http://omim.org/entry/610991

Research Resources

• ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=OBSL1%5Bgene%5D

• HGNC Gene Symbol Report

• Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:23363

• NCBI Gene

• UniProt
 https://www.uniprot.org/uniprot/O75147

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22624670

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22156540

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23018678

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19481195
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694976/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301654

• OMIM: OBSCURIN-LIKE 1
 http://omim.org/entry/610991

Reprinted from Genetics Home Reference:
 https://ghr.nlm.nih.gov/gene/OBSL1

Reviewed: June 2018
Published: November 12, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services