NTRK1 gene
neurotrophic receptor tyrosine kinase 1

Normal Function

The \textit{NTRK1} gene provides instructions for making a protein that is essential for the development and survival of nerve cells (neurons), especially those that transmit information about sensations such as pain, temperature, and touch (sensory neurons). The NTRK1 protein is found on the surface of cells, particularly sensory neurons. It acts as a kinase, which is an enzyme that changes the activity of other proteins by adding a cluster of oxygen and phosphorus atoms (a phosphate group) at specific positions. This process is called phosphorylation. The NTRK1 protein is turned on (activated) when another protein called nerve growth factor beta (NGF\textbeta) attaches (binds) to it and signals the NTRK1 protein to phosphorylate itself (autophosphorylation). Then, the activated NTRK1 protein phosphorylates other proteins; this process is needed to transmit signals for cell growth and survival.

Health Conditions Related to Genetic Changes

Congenital insensitivity to pain with anhidrosis

Mutations in the \textit{NTRK1} gene cause congenital insensitivity to pain with anhidrosis (CIPA), a condition characterized by the inability to feel pain and decreased or absent sweating (anhidrosis). Many mutations in the \textit{NTRK1} gene are known to cause the condition. Many of the \textit{NTRK1} gene mutations lead to a protein that cannot be activated by phosphorylation, which means the mutated NTRK1 protein cannot transmit cell growth and survival signals to neurons. Without the proper signaling, neurons die by a process of self-destruction called apoptosis. Loss of sensory neurons leads to the inability to feel pain in people with CIPA. In addition, people with CIPA lose the nerves leading to their sweat glands, which causes the anhidrosis seen in affected individuals.

Cancers

Mutations in the \textit{NTRK1} gene are frequently found in people with a common type of thyroid cancer called papillary thyroid carcinoma. These mutations are acquired during a person's lifetime and are present only in certain cells. Such mutations are called somatic mutations. The mutations involved in papillary thyroid carcinoma occur when rearrangements of genetic material combine part of the \textit{NTRK1} gene with another gene. At least three other genes are known to be involved in these rearrangements: the \textit{TPM3} gene, the \textit{TPR} gene, and the \textit{TFG} gene. All of these genetic rearrangements create mutated proteins called TRK oncoproteins. Unlike normal NTRK1 protein, TRK oncoproteins do not have to be activated by binding
to the NGFβ protein; they are always turned on. Constant activation of the protein signals for the cells to grow and divide continuously, which can lead to papillary thyroid carcinoma.

Chromosomal Location

Cytogenetic Location: 1q23.1, which is the long (q) arm of chromosome 1 at position 23.1

Molecular Location: base pairs 156,815,750 to 156,881,850 on chromosome 1 (Homo sapiens Updated Annotation Release 109.20191205, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- high affinity nerve growth factor receptor
- MTC
- neurotrophic tyrosine kinase, receptor, type 1
- NTRK1_HUMAN
- p140-TrkA
- TRK
- Trk-A
- TRK1
- TRK1-transforming tyrosine kinase protein
- TRKA
- tyrosine kinase receptor A

Additional Information & Resources

Educational Resources

 https://www.ncbi.nlm.nih.gov/books/NBK21716/#A6893
Clinical Information from GeneReviews

• Congenital Insensitivity to Pain with Anhidrosis
 https://www.ncbi.nlm.nih.gov/books/NBK1769

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28NTRK1%5BTIAB%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29+AND+english%5Blanguage%5D+AND+human%5Bspecies%5D+AND+%22last+1800+days%22

Catalog of Genes and Diseases from OMIM

• NEUROTROPHIC TYROSINE KINASE, RECEPTOR, TYPE 1
 http://omim.org/entry/191315
• THYROID CANCER, NONMEDULLARY, 1
 http://omim.org/entry/188550
• TRK-FUSED GENE
 http://omim.org/entry/602498

Research Resources

• Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_NTRK1.html
• ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=NTRK1%5Bgene%5D
• HGNC Gene Symbol Report
• Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:4914
• NCBI Gene
• UniProt
 https://www.uniprot.org/uniprot/P04629
Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19883730

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8696348

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11748840

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10851172

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11719521

- OMIM: NEUROTROPHIC TYROSINE KINASE, RECEPTOR, TYPE 1
 http://omim.org/entry/191315

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16242838

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16183296

Reprinted from Genetics Home Reference:
https://ghr.nlm.nih.gov/gene/NTRK1

Reviewed: May 2011
Published: February 11, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services