NRAS gene
NRAS proto-oncogene, GTPase

Normal Function
The NRAS gene provides instructions for making a protein called N-Ras that is involved primarily in regulating cell division. Through a process known as signal transduction, the protein relays signals from outside the cell to the cell's nucleus. These signals instruct the cell to grow and divide (proliferate) or to mature and take on specialized functions (differentiate). The N-Ras protein is a GTPase, which means it converts a molecule called GTP into another molecule called GDP. The N-Ras protein acts like a switch, and it is turned on and off by the GTP and GDP molecules. To transmit signals, the N-Ras protein must be turned on by attaching (binding) to a molecule of GTP. The N-Ras protein is turned off (inactivated) when it converts the GTP to GDP. When the protein is bound to GDP, it does not relay signals to the cell's nucleus.

The NRAS gene belongs to a class of genes known as oncogenes. When mutated, oncogenes have the potential to cause normal cells to become cancerous. The NRAS gene is in the Ras family of oncogenes, which also includes two other genes: HRAS and KRAS. The proteins produced from these three genes are GTPases. These proteins play important roles in cell division, cell differentiation, and the self-destruction of cells (apoptosis).

Health Conditions Related to Genetic Changes
Giant congenital melanocytic nevus
At least two mutations in the NRAS gene have been found to cause giant congenital melanocytic nevus. This condition is characterized by a large, noncancerous patch of abnormally dark skin that is present from birth and an increased risk of a type of skin cell cancer called melanoma. The NRAS gene mutations that cause this condition are somatic, meaning that they occur during a person's lifetime and are present only in certain cells. The mutations occur during embryonic development in cells that will develop into pigment-producing skin cells (melanocytes). The mutations that cause this condition affect a single protein building block (amino acid) in the N-Ras protein. Specifically, the mutations replace the amino acid glutamine at position 61 with either lysine or arginine (written as Gln61Lys or Q61K and Gln61Arg or Q61R). These mutations lead to production of an N-Ras protein that is constantly turned on (constitutively active). Instead of triggering cell growth in response to particular signals from outside the cell, the overactive protein directs cells to grow and divide constantly. The uncontrolled cell growth of early melanocytes leads to a large patch of darkly pigmented skin characteristic of giant congenital melanocytic
nevus. Uncontrolled cell growth of melanocytes after birth contributes to the risk of developing melanoma in people with giant congenital melanocytic nevus.

Noonan syndrome

Autoimmune lymphoproliferative syndrome

Core binding factor acute myeloid leukemia

Cytogenetically normal acute myeloid leukemia

Epidermal nevus

Lung cancer

Melanoma

Cancers

Somatic mutations in the NRAS gene are involved in the development of several types of cancer. These mutations lead to an N-Ras protein that is constitutively active and can direct cells to grow and divide without control. Studies suggest that NRAS gene mutations are common in the aggressive skin cancer melanoma, including individuals without giant congenital melanocytic nevus (described above). Mutations in the NRAS gene have also been found in other types of cancer.

For reasons that are unclear, inherited mutations in the NRAS gene do not appear to increase the risk of cancer in people with Noonan syndrome.

Chromosomal Location

Cytogenetic Location: 1p13.2, which is the short (p) arm of chromosome 1 at position 13.2

Molecular Location: base pairs 114,704,469 to 114,716,771 on chromosome 1 (Homo sapiens Updated Annotation Release 109.20190905, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI
Other Names for This Gene

- GTPase NRas
- GTPase NRas precursor
- N-ras
- N-ras protein part 4
- neuroblastoma RAS viral (v-ras) oncogene homolog
- neuroblastoma RAS viral oncogene homolog
- NRAS1
- NS6
- RASN_HUMAN
- transforming protein N-Ras
- v-ras neuroblastoma RAS viral oncogene homolog

Additional Information & Resources

Educational Resources
- Genomes (second edition, 2002): Signal transduction with many steps between receptor and genome
 https://www.ncbi.nlm.nih.gov/books/NBK21127/#A7903

Clinical Information from GeneReviews
- Noonan Syndrome
 https://www.ncbi.nlm.nih.gov/books/NBK1124

Scientific Articles on PubMed
- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28NRAS%5BTI%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1080+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM
- MELANOMA, CUTANEOUS MALIGNANT, SUSCEPTIBILITY TO, 1
 http://omim.org/entry/155600
- NRAS PROTOONCOGENE, GTPase
 http://omim.org/entry/164790
Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/NRASID92.html
- ClinVar
- HGNC Gene Symbol Report
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:4893
- NCBI Gene
- UniProt
 https://www.uniprot.org/uniprot/P01111

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24129063
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19966803
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3118669/
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18814281
- OMIM: NRAS PROTOONCOGENE, GTPase
 http://omim.org/entry/164790
 Review. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20876176

Reprinted from Genetics Home Reference: