NF1 gene
neurofibromin 1

Normal Function

The NF1 gene provides instructions for making a protein called neurofibromin. This protein is produced in many types of cells, including nerve cells and specialized cells called oligodendrocytes and Schwann cells that surround nerves. These specialized cells form myelin sheaths, which are the fatty coverings that insulate and protect certain nerve cells.

Neurofibromin acts as a tumor suppressor protein. Tumor suppressors normally prevent cells from growing and dividing too rapidly or in an uncontrolled way. This protein appears to prevent cell overgrowth by turning off another protein (called ras) that stimulates cell growth and division. Other potential functions for neurofibromin are under investigation.

Health Conditions Related to Genetic Changes

Neurofibromatosis type 1

More than 1,000 NF1 mutations that cause neurofibromatosis type 1 have been identified. Most of these mutations are unique to a particular family. Many NF1 mutations result in the production of an extremely short version of neurofibromin. This shortened protein cannot perform its normal job of inhibiting cell division. When mutations occur in both copies of the NF1 gene in Schwann cells, the resulting loss of neurofibromin allows noncancerous tumors called neurofibromas to form. Research indicates that the formation of neurofibromas requires the interaction of Schwann cells with other cells, including mast cells. Mast cells are normally involved in wound healing and tissue repair.

Lung cancer

Cancers

In rare cases, inactivation of one copy of the NF1 gene in each cell increases the risk of developing juvenile myelomonocytic leukemia (JMML). Juvenile myelomonocytic leukemia is cancer of blood-forming tissue that usually occurs in children younger than 2. This condition causes the bone marrow to make an excessive number of immature white blood cells that cannot carry out their normal infection-fighting functions. These abnormal cells can build up in the blood and bone marrow, leaving less room for healthy white blood cells, red blood cells, and platelets. Children
affected by this disorder may experience fatigue, fever, and easy bleeding or bruising.

Chromosomal Location

Cytogenetic Location: 17q11.2, which is the long (q) arm of chromosome 17 at position 11.2

Molecular Location: base pairs 31,094,927 to 31,377,677 on chromosome 17 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

• Neurofibromatosis-related protein NF-1
• Neurofibromatosis Type 1 Protein
• neurofibromin 1 (neurofibromatosis, von Recklinghausen disease, Watson disease)
• NF1-GAP-Related Protein
• NF1 GRP
• NF1 Protein
• NF1_HUMAN

Additional Information & Resources

Educational Resources

• Cancer Medicine (sixth edition, 2003): NF1 and NF2 Genes
 https://www.ncbi.nlm.nih.gov/books/NBK12681/

• National Cancer Institute Topic: Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

Clinical Information from GeneReviews

• Neurofibromatosis 1
 https://www.ncbi.nlm.nih.gov/books/NBK1109
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28NF1%5BTI%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bl%5D+AND+human%5Bmh%5D+AND+%22last+720+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- JUVENILE MYELOMONOCYTIC LEUKEMIA
 http://omim.org/entry/607785
- NEUROFIBROMIN 1
 http://omim.org/entry/613113

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/NF1ID134.html
- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=NF1%5Bgene%5D
- HGNC Gene Family: Armadillo-like helical domain containing
 https://www.genenames.org/cgi-bin/genefamilies/set/1492
- HGNC Gene Symbol Report
 https://www.genenames.org/cgi-bin/gene_symbol_report?q=data/hgnc_data.php&hgnc_id=7765
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:4763
- NCBI Gene
- UniProt
 https://www.uniprot.org/uniprot/P21359

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15021234
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15581179
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15715079

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10979983

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12573431

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12403558

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11129335

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11857752

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12403555

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11110599

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16261595

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12041525

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11286939

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16813595

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14679174
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC297005/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15797177

Reviewed: March 2007
Published: September 11, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services