MYH9 gene

myosin heavy chain 9

Normal Function

The MYH9 gene provides instructions for making a protein called myosin-9. This protein is one part (subunit) of the myosin IIA protein.

There are three forms of myosin II, called myosin IIA, myosin IIB and myosin IIC. They play roles in cell movement (cell motility); maintenance of cell shape; and cytokinesis, which is the step in cell division when the fluid surrounding the nucleus (the cytoplasm) divides to form two separate cells. While some cells use more than one type of myosin II, certain blood cells such as platelets and white blood cells (leukocytes) use only myosin IIA.

Each type of myosin II protein consists of two heavy chains and four light chains. The heavy chains each have two parts: a head region and a tail region. The head region interacts with actin, a protein that is important for cell movement and shape. The long tail region interacts with other proteins, including the tail regions of other myosin proteins.

Health Conditions Related to Genetic Changes

MYH9-related disorder

More than 45 mutations in the MYH9 gene have been found to cause MYH9-related disorder. This disorder is characterized by bleeding problems, hearing loss, kidney (renal) disease, and clouding of the lens of the eyes (cataracts). Most of the mutations that cause this condition change single protein building blocks (amino acids) in the myosin-9 protein. Mutations that are located near the head of the myosin protein tend to lead to a more severe disorder than mutations that are located toward the tail of the protein. Recurring mutations involving the amino acid arginine at position 702 in the protein tend to result in many problems, including a severely reduced amount of platelets (thrombocytopenia), early-onset renal disease, and hearing loss in infancy.

Mutations in the MYH9 gene lead to the production of a nonfunctional protein. A nonfunctional myosin-9 protein cannot properly interact with other subunits to form myosin IIA. Platelets, which only express myosin IIA, are most affected by a lack of functional myosin-9, accounting for the thrombocytopenia seen in all individuals with MYH9-related disorder.

Nonsyndromic hearing loss
Chromosomal Location

Cytogenetic Location: 22q12.3, which is the long (q) arm of chromosome 22 at position 12.3

Molecular Location: base pairs 36,281,277 to 36,388,067 on chromosome 22 (Homo sapiens Updated Annotation Release 109.20190905, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

• cellular myosin heavy chain, type A
• MYH9_HUMAN
• myosin-9
• myosin heavy chain, non-muscle IIa
• myosin, heavy chain 9, non-muscle
• NMHC-II-A
• NMMHC-A
• NMMHC II-a
• NMMHC-IIA
• NMMHCA
• non-muscle myosin heavy chain A
• non-muscle myosin heavy chain IIa
• nonmuscle myosin heavy chain II-A

Additional Information & Resources

Educational Resources

• Molecular Biology of the Cell (fourth edition, 2002): Myosin II (figure)
 https://www.ncbi.nlm.nih.gov/books/NBK26888/figure/A3043/
Clinical Information from GeneReviews

- MYH9-Related Disorders
 https://www.ncbi.nlm.nih.gov/books/NBK2689

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28MYH9%5BTIAB%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+720+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- MYOSIN, HEAVY CHAIN 9, NONMUSCLE
 http://omim.org/entry/160775

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/MYH9ID481.html

- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=MYH9%5Bgene%5D

- HGNC Gene Symbol Report

- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:4627

- NCBI Gene

- UniProt
 https://www.uniprot.org/uniprot/P35579

Sources for This Summary

OMIM: MYOSIN, HEAVY CHAIN 9, NONMUSCLE
http://omim.org/entry/160775

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20200500

Reprinted from Genetics Home Reference:

Reviewed: April 2011
Published: December 10, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services