MUT gene
methylmalonyl-CoA mutase

Normal Function

The MUT gene provides instructions for making an enzyme called methylmalonyl CoA mutase. This enzyme is active in mitochondria, which are specialized structures inside cells that serve as energy-producing centers.

Methylmalonyl CoA mutase is responsible for a particular step in the breakdown of several protein building blocks (amino acids), specifically isoleucine, methionine, threonine, and valine. The enzyme also helps break down certain types of fats (lipids) and cholesterol. First, several chemical reactions convert the amino acids, lipids, or cholesterol to a molecule called methylmalonyl CoA. Then, working with a compound called adenosylcobalamin (AdoCbl), which is a form of vitamin B12, methylmalonyl CoA mutase converts methylmalonyl CoA to a compound called succinyl-CoA. Other enzymes break down succinyl-CoA into molecules that are later used for energy.

Health Conditions Related to Genetic Changes

Methylmalonic acidemia

More than 200 mutations in the MUT gene have been identified in people with methylmalonic acidemia, a condition characterized by feeding difficulties, developmental delay, and long-term health problems. These genetic changes prevent the production of functional methylmalonyl CoA mutase or reduce the activity of the enzyme. As a result, certain proteins and lipids are not broken down properly. This defect allows methylmalonyl CoA and other toxic compounds to build up in the body's organs and tissues, causing the signs and symptoms of methylmalonic acidemia.

Mutations that prevent the production of any functional methylmalonyl CoA mutase lead to a form of methylmalonic acidemia designated mut\(^0\). Mut\(^0\) is the most severe form of this disorder and has the poorest outcome. Mutations that alter the structure of the enzyme but do not completely eliminate its activity lead to a form of the condition designated mut\(^+\). The mut\(^+\) form is typically less severe, with more variable symptoms than the mut\(^0\) form.
Chromosomal Location

Cytogenetic Location: 6p12.3, which is the short (p) arm of chromosome 6 at position 12.3

Molecular Location: base pairs 49,430,360 to 49,463,328 on chromosome 6 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

• MCM
• methylalonyl-CoA mutase
• methylamly-CoA isomerase
• methylmalonyl CoA mutase
• methylmalonyl Coenzyme A mutase
• methylmalonyl Coenzyme A mutase precursor
• MUTA_HUMAN

Additional Information & Resources

Educational Resources

• Basic Neurochemistry (sixth edition, 1999): Methylmalonyl-CoA mutase deficiency prevents the isomerization of methylmalonyl-CoA to succinyl-CoA
 https://www.ncbi.nlm.nih.gov/books/NBK27933/#A3117

• Biochemistry (fifth edition, 2002): Propionyl CoA Is Converted into Succinyl CoA in a Reaction That Requires Vitamin B12
 https://www.ncbi.nlm.nih.gov/books/NBK22387/#A3065

GeneReviews

• Isolated Methylmalonic Acidemia
 https://www.ncbi.nlm.nih.gov/books/NBK1231
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28MUT%5BTI%5D%29+OR+%28methylmalonyl+Coenzyme+A+mutase%5BTIAB%5D%29%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3600+days%22%5Bdp%5D

OMIM

- METHYLMALONYL-CoA MUTASE
 http://omim.org/entry/609058

Research Resources

- ClinVar

- HGNC Gene Symbol Report

- NCBI Gene

- UniProt
 http://www.uniprot.org/uniprot/P22033

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17597648

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301409

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12402345

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16281286

Reviewed: July 2011
Published: May 1, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services