MT-TS1 gene
mitochondrially encoded tRNA serine 1 (UCN)

Normal Function

The *MT-TS1* gene provides instructions for making a particular type of RNA, a molecule that is a chemical cousin of DNA. This type of RNA, called transfer RNA (tRNA), helps assemble protein building blocks known as amino acids into full-length, functioning proteins. The *MT-TS1* gene provides instructions for a specific form of tRNA that is designated as tRNA\(^{\text{Ser(UCN)}}\). During protein assembly, this molecule attaches to a particular amino acid, serine (Ser), and inserts it into the appropriate locations in the growing protein.

The tRNA\(^{\text{Ser(UCN)}}\) molecule is present in cellular structures called mitochondria. These structures convert energy from food into a form that cells can use. Through a process called oxidative phosphorylation, mitochondria use oxygen, simple sugars, and fatty acids to create adenosine triphosphate (ATP), the cell’s main energy source. The tRNA\(^{\text{Ser(UCN)}}\) molecule is involved in the assembly of proteins that carry out oxidative phosphorylation.

Health Conditions Related to Genetic Changes

Myoclonic epilepsy with ragged-red fibers

Mutations in the *MT-TS1* gene have been found in a few people with variant forms of myoclonic epilepsy with ragged-red fibers (MERRF). In these cases, affected individuals typically have muscle twitches (myclonus), muscle weakness (myopathy), difficulty coordinating movement (ataxia), hearing loss, seizures, and intellectual impairment. Two mutations in the *MT-TS1* gene have been found to cause these symptoms. One mutation replaces the DNA building block (nucleotide) thymine with the nucleotide cytosine at gene position 7512 (written as T7512C). The other mutation inserts an extra cytosine at position 7472 (written as 7472insC). Researchers have not determined how these genetic changes cause variant forms of MERRF.

Nonsyndromic hearing loss

Palmoplantar keratoderma with deafness

Some of the *MT-TS1* gene mutations responsible for hearing loss can cause additional signs and symptoms in affected individuals. For example, one mutation causes a skin condition called palmoplantar keratoderma with deafness. In addition
to hearing loss, this condition causes skin on the palms of the hands and the soles of the feet to become thick, scaly, and calloused.

The genetic change that results in this combination of features replaces the nucleotide adenine with the nucleotide guanine at position 7445 in the MT-TS1 gene (written as A7445G). This mutation likely disrupts the normal production of the tRNASer(UCN) molecule. As a result, less tRNASer(UCN) is available to assemble proteins within mitochondria. These changes reduce the production of proteins needed for oxidative phosphorylation, which may impair the ability of mitochondria to make ATP. It is unclear why the effects of the mutation are limited to cells in the inner ear and the skin in this condition.

Other disorders

In some families, mutations in the MT-TS1 gene cause health problems unrelated to hearing loss. For example, one mutation has been identified in people with muscle pain, weakness, and extreme fatigue associated with exercise (exercise intolerance). The genetic change that causes these symptoms replaces the nucleotide adenine with the nucleotide guanine at position 7497 in the MT-TS1 gene (written as A7497G).

It is unclear why changes in the MT-TS1 gene can cause such a large variety of signs and symptoms. Even within a single family, affected individuals may have different health problems caused by the same genetic change. Researchers believe that other genetic and environmental factors help determine whether a MT-TS1 gene mutation leads to isolated hearing loss, hearing loss associated with other signs and symptoms, or features unrelated to hearing.
Chromosomal Location
Molecular Location: base pairs 7,446 to 7,514 on mitochondrial DNA (Homo sapiens Updated Annotation Release 109.20200228, GRCh38.p13) (NCBI)

Other Names for This Gene
• MTTS1
• tRNA serine 1 (UCN)
• TRNS1 tRNA
Additional Information & Resources

Educational Resources

• Madame Curie Bioscience Database: Mitochondrial Translation System
 https://www.ncbi.nlm.nih.gov/books/NBK6292/#A27945

• Mayo Clinic: North American Mitochondrial Disease Consortium Patient Registry and Biorepository (NAMDC)
 https://www.mayo.edu/research/clinical-trials/cls-20409244

• Neuromuscular Disease Center, Washington University: MERRF
 https://neuromuscular.wustl.edu/mitosyn.html#merrf

• Neuromuscular Disease Center, Washington University: Mitochondrial Deafness
 https://neuromuscular.wustl.edu/mitosyn.html#deaf

Clinical Information from GeneReviews

• Hereditary Hearing Loss and Deafness Overview
 https://www.ncbi.nlm.nih.gov/books/NBK1434

• MERRF
 https://www.ncbi.nlm.nih.gov/books/NBK1520

• Mitochondrial Disorders Overview
 https://www.ncbi.nlm.nih.gov/books/NBK1224

• Nonsyndromic Hearing Loss and Deafness, Mitochondrial
 https://www.ncbi.nlm.nih.gov/books/NBK1422

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28MTTS1%5BTIAB%5D%29+OR+%28%28Mitochondrial+Diseases%5BMAJR%5D%29+AND+%28hearing+loss+%5BMH%5D%29+OR+%28tRNA%5BTIAB%5D%29+OR+%28A7445G%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3600+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

• TRANSFER RNA, MITOCHONDRIAL, SERINE, 1
 http://omim.org/entry/590080
Research Resources

- ClinVar
- Hereditary Hearing Loss Homepage
 https://hereditaryhearingloss.org/
- HGNC Gene Symbol Report
- Mitomap: rRNA/tRNA mutations
 https://www.mitomap.org/MITOMAP/MutationsRNA
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:4574
- NCBI Gene

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15987292
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19950421
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16120424
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14605505
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9778262
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23430555
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565634/
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18537605
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/7669057
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301595
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15833431
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9450881
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11919191
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22538251

Reviewed: May 2014
Published: April 15, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services