MSX2 gene
msh homeobox 2

Normal Function

The *MSX2* gene provides instructions for producing a protein that is necessary for proper development of cells and tissues throughout the body. The MSX2 protein is a transcription factor, which means it attaches (binds) to specific regions of DNA and helps control the activity of certain genes. Specifically, the protein controls the activity of genes that regulate cell growth and division (proliferation), cell maturation and specialization (differentiation), and cell survival. The regulation of these functions ensures that cells start and stop growing at specific times and that they are positioned correctly during development.

The MSX2 protein is part of a chemical signaling pathway known as the bone morphogenic protein (BMP) pathway. This signaling pathway regulates various cellular processes and is involved in the growth of cells, including new bone cells. The MSX2 protein seems to be particularly critical for the development of the skull.

Health Conditions Related to Genetic Changes

Enlarged parietal foramina

At least 10 mutations in the *MSX2* gene have been identified in people with enlarged parietal foramina type 1. This condition is characterized by enlarged openings (foramina) in the parietal bones, which are the two bones that form the top and sides of the skull. Openings in the parietal bones are normal during fetal development, but they usually close before birth. In people with this condition, the parietal foramina remain open throughout life.

The mutations that cause enlarged parietal foramina result in the production of an MSX2 protein that cannot bind to DNA, which alters the regulation of multiple genes. As a result, several cell processes are disrupted, including proliferation, differentiation, and survival. In early development, the skull seems to be particularly sensitive to changes in MSX2 protein activity and changes in cell function. Specifically, cells in the skull that are involved in bone formation (ossification) cannot function normally, leading to a lack of bone in areas of the skull and enlarged parietal foramina.

Other disorders

At least two mutations in the *MSX2* gene cause a condition called craniosynostosis type 2 (also known as Boston type craniosynostosis). Craniosynostosis involves premature closure of the bones of the skull, leading to a misshapen head.
People with craniosynostosis type 2 can have skull malformations including a protruding forehead (frontal bossing), a short wide head that is pointed at the top (turribrachycephaly), or a cloverleaf-shaped skull (Kleeblattschaedel deformity). Most affected people have vision problems, and a few have experienced seizures. Intelligence is typically normal.

It is unclear how changes in the MSX2 gene can cause premature closure of the skull bones in craniosynostosis type 2 and impaired bone formation in enlarged parietal foramina (described above).

Chromosomal Location

Cytogenetic Location: 5q35.2, which is the long (q) arm of chromosome 5 at position 35.2

Molecular Location: base pairs 174,724,582 to 174,730,896 on chromosome 5 (Homo sapiens Updated Annotation Release 109.20190905, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene
- CRS2
- FPP
- HOX8
- MSH
- msh homeobox homolog 2
- MSX2_HUMAN
- PFM
- PFM1

Additional Information & Resources

Educational Resources
- Developmental Biology (sixth edition, 2000): Transcription Factors
 https://www.ncbi.nlm.nih.gov/books/NBK10023/#A763
Clinical Information from GeneReviews

• Enlarged Parietal Foramina
 https://www.ncbi.nlm.nih.gov/books/NBK1128

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28MSX2%5BTI%5D%29+OR+%28enlarged+parietal+foramina%5BTIAB%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22+AND+MSX2%5Bgene%5D

Catalog of Genes and Diseases from OMIM

• CRANIOSYNOSTOSIS 2
 http://omim.org/entry/604757
• MSH HOMEOBOX 2
 http://omim.org/entry/123101

Research Resources

• Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/MSX2ID41438ch5q35.html
• ClinVar
 https://www.ncbi.nlm.nih.govclinvar?term=MSX2%5Bgene%5D
• HGNC Gene Symbol Report
• Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:4488
• NCBI Gene
• UniProt
 https://www.uniprot.org/uniprot/P35548

Sources for This Summary

• OMIM: MSH HOMEOBOX 2
 http://omim.org/entry/123101
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10742103

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26427715
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670987/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10767351

Reprinted from Genetics Home Reference:

Reviewed: March 2016
Published: October 29, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services