LRP5 gene
LDL receptor related protein 5

Normal Function

The LRP5 gene provides instructions for making a protein that is embedded in the outer membrane of many types of cells. It is known as a co-receptor because it works with another receptor protein, frizzled-4 (produced from the FZD4 gene), to transmit chemical signals from outside the cell to the cell's nucleus. Frizzled-4 and the LRP5 protein participate in the Wnt signaling pathway, a series of steps that affect the way cells and tissues develop. Wnt signaling is important for cell division (proliferation), attachment of cells to one another (adhesion), cell movement (migration), and many other cellular activities.

The LRP5 protein plays an important role in the development and maintenance of several tissues. During early development, it helps guide the specialization of cells in the retina, which is the light-sensitive tissue at the back of the eye. The LRP5 protein is also involved in establishing a blood supply to the retina and the inner ear. Additionally, this protein helps regulate bone mineral density, which is a measure of the amount of calcium and other minerals in bones. The minerals give the bones strength, making them less likely to break.

Health Conditions Related to Genetic Changes

Familial exudative vitreoretinopathy

More than 15 mutations in the LRP5 gene have been identified in people with the eye disease familial exudative vitreoretinopathy. Some of these mutations change single protein building blocks (amino acids) in the LRP5 protein, while others insert or delete genetic material in the gene. Most of these mutations reduce the amount of functional LRP5 protein that is produced within cells.

A reduction in the amount of LRP5 protein disrupts chemical signaling in the developing eye, which interferes with the formation of blood vessels at the edges of the retina. The resulting abnormal blood supply to this tissue can lead to retinal damage and vision loss. Because the LRP5 protein plays a role in bone formation, LRP5 gene mutations also cause reduced bone mineral density in some people with familial exudative vitreoretinopathy.

Juvenile primary osteoporosis

At least five LRP5 gene mutations have been found in people with juvenile primary osteoporosis. Individuals with this condition have low bone mineral density and thinning of the bones (osteoporosis) beginning in childhood. Osteoporosis causes
the bones to be brittle and to break easily, which leads to multiple bone fractures. The \textit{LRP5} gene mutations that cause this condition result in an LRP5 protein that is unable to transmit chemical signals along the Wnt signaling pathway. The resulting reduction in signaling disrupts regulation of bone mineral density, leading to osteoporosis at a young age.

Osteoporosis-pseudoglioma syndrome

More than 40 \textit{LRP5} gene mutations that cause osteoporosis-pseudoglioma syndrome have been identified. Beginning in childhood, people with this condition have extremely low bone mineral density and osteoporosis, which leads to multiple bone fractures. Affected individuals also have eye abnormalities that cause vision impairment from birth or early infancy. Many \textit{LRP5} gene mutations that cause osteoporosis-pseudoglioma syndrome prevent cells from making any LRP5 protein. Other mutations change single amino acids in the LRP5 protein. These abnormal proteins cannot insert into the outer membrane of the cell, which makes them unable to perform their function. Loss of LRP5 protein function disrupts the chemical signaling pathways that are needed for the formation of bone and for normal retinal development, leading to the bone and eye abnormalities characteristic of osteoporosis-pseudoglioma syndrome. It is unclear why some \textit{LRP5} gene mutations affect eye development and others do not.

Other disorders

Studies suggest that changes in the \textit{LRP5} gene may influence the risk of developing osteoporosis in adulthood. Other genetic and environmental factors likely contribute to this common disorder.

Other \textit{LRP5} gene mutations cause disorders associated with an increase in bone mineral density. These include autosomal dominant osteopetrosis type 1 and autosomal dominant osteosclerosis. In some cases, these conditions can cause abnormal bone growth and related skeletal abnormalities. Rarely, affected individuals have hearing loss or circulation problems in the brain. Other people with increased bone mineral density do not have any associated health problems. The mutations responsible for increased bone mineral density syndromes overactivate the LRP5 protein, which increases Wnt signaling within cells and enhances bone formation.
Chromosomal Location

Cytogenetic Location: 11q13.2, which is the long (q) arm of chromosome 11 at position 13.2

Molecular Location: base pairs 68,298,866 to 68,449,275 on chromosome 11 (Homo sapiens Updated Annotation Release 109.20190607, GRCh38.p13) (NCBI)

Other Names for This Gene

- BMND1
- EVR1
- EVR4
- HBM
- low density lipoprotein receptor-related protein 5
- low density lipoprotein receptor-related protein 7
- LR3
- LRP5_HUMAN
- LRP7
- OPS
- OPTA1
- VBCH2
Additional Information & Resources

Educational Resources
• Developmental Biology (sixth edition, 2000): The Wnt signal transduction pathway (figure)
 https://www.ncbi.nlm.nih.gov/books/NBK10043/?rendertype=figure&id=A1062
• National Institute of Arthritis and Musculoskeletal and Skin Diseases: Osteoporosis Overview
 https://www.bones.nih.gov/health-info/bone/osteoporosis

Clinical Information from GeneReviews
• Familial Exudative Vitreoretinopathy, Autosomal Dominant
 https://www.ncbi.nlm.nih.gov/books/NBK1147

Scientific Articles on PubMed
• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28LRP5%5BTIAB%5D %29+OR+%28low+density+lipoprotein+receptor-related+protein+5%5BTIAB%5D %29%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena %5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22+AND+5Bdp%5D

Catalog of Genes and Diseases from OMIM
• BONE MINERAL DENSITY QUANTITATIVE TRAIT LOCUS 1
 http://omim.org/entry/601884
• ENDOSTEAL HYPEROSTOSIS, AUTOSOMAL DOMINANT
 http://omim.org/entry/144750
• LOW DENSITY LIPOPROTEIN RECEPTOR-RELATED PROTEIN 5
 http://omim.org/entry/603506
• OSTEOPETROSIS, AUTOSOMAL DOMINANT 1
 http://omim.org/entry/607634

Research Resources
• Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/LRP5ID44282ch11q13.html
• ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=LRP5%5Bgene%5D
• HGNC Gene Symbol Report
• Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:4041
Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16252235
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1271384/
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17395706
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12015390
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11791919
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15824851
 • He X, Semenov M, Tamai K, Zeng X. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development. 2004 Apr;131(8):1663-77. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15084453
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22487062
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374890/
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15850991

Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC419982/

Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1181948/

Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1180253/

Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3282142/

Reprinted from Genetics Home Reference: