KRT1 gene
keratin 1

Normal Function

The KRT1 gene provides instructions for making a protein called keratin 1. Keratins are a group of tough, fibrous proteins that form the structural framework of cells called keratinocytes that make up the skin, hair, and nails. Keratin 1 is produced in keratinocytes in the outer layer of the skin (the epidermis), including the skin on the palms of the hands and soles of the feet.

The keratin 1 protein partners with another keratin protein, either keratin 9 or keratin 10, to form molecules called keratin intermediate filaments. These filaments assemble into strong networks that provide strength and resiliency to the skin and protect it from being damaged by friction and other everyday physical stresses.

Health Conditions Related to Genetic Changes

Epidermolytic hyperkeratosis

Dozens of mutations in the KRT1 gene have been found in people with epidermolytic hyperkeratosis. This condition is a skin disorder characterized by red, blistering skin at an early age and thick skin (hyperkeratosis) later in life. People with KRT1 gene mutations typically have PS-type epidermolytic hyperkeratosis, which features thick skin on the palms of the hands and soles of the feet (palmoplantar hyperkeratosis) in addition to other parts of the body.

Most KRT1 gene mutations associated with epidermolytic hyperkeratosis change a single protein building block (amino acid) in the keratin 1 protein. These amino acid changes commonly occur in regions of the protein that play a role in intermediate filament formation. The mutations alter the keratin 1 protein and seem to affect how intermediate filaments interact with each other to form networks. The altered proteins still form intermediate filaments, but the intermediate filament networks are weaker and do not function normally. Without a strong network, skin cells become fragile and are easily damaged, which can lead to blistering in response to friction or mild trauma. It is unclear how these mutations cause the overgrowth of keratinocytes that results in hyperkeratotic skin.

Other disorders

KRT1 gene mutations are involved in many other skin disorders. In several of these conditions, there is palmoplantar hyperkeratosis, but the skin on other parts of the body is usually not affected. A condition called epidermolytic palmoplantar keratoderma caused by KRT1 gene mutations is relatively mild. Affected individuals
typically have palmoplantar hyperkeratosis with detachment or loosening of the epidermis (epidermolysis), usually seen as blistering. People with nonepidermolytic palmoplantar keratoderma have palmoplantar hyperkeratosis with no evidence of epidermolysis. In striate palmoplantar keratoderma type 3, the skin thickening on the palms and soles follows a specific pattern.

KRT1 gene mutations are also responsible for a skin disorder called Curth-Macklin ichthyosis hystrix. This condition involves severe hyperkeratosis on the palms and soles and sometimes the skin over large joints or on the torso. This condition is distinguished by specific changes in the keratinocytes.

Another skin condition caused by genetic changes in the *KRT1* gene called cyclic ichthyosis with epidermolytic hyperkeratosis is similar to epidermolytic hyperkeratosis, but the skin changes disappear for short periods, then recur. The recurrent skin changes can last for weeks or months.

Chromosomal Location

Cytogenetic Location: 12q13.13, which is the long (q) arm of chromosome 12 at position 13.13

Molecular Location: base pairs 52,674,736 to 52,680,407 on chromosome 12 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

[Diagram of chromosome 12 showing the location of KRT1 gene]

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- 67 kDa cytokeratin
- CK-1
- CK1
- cytokeratin 1
- cytokeratin-1
- EHK1
- hair alpha protein
- K1
• K2C1_HUMAN
• keratin 1, type II
• keratin, type II cytoskeletal 1
• KRT1A
• type-II keratin Kb1

Additional Information & Resources

Educational Resources
• Human Intermediate Filament Database
 http://www.interfil.org/details.php?id=NM_006121
 https://www.ncbi.nlm.nih.gov/books/NBK21560/

Scientific Articles on PubMed
• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28KRT1%5BTIAB%5D%29+OR+%28keratin+1%5BTIAB%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22+AND+%5Ddp%5D

Catalog of Genes and Diseases from OMIM
• ICHTHYOSIS HYSTRIX, CURTH-MACKLIN TYPE
 http://omim.org/entry/146590
• ICHTHYOSIS, CYCLIC, WITH EPIDERMOLOYTIC HYPERKERATOSIS
 http://omim.org/entry/607602
• KERATIN 1, TYPE II
 http://omim.org/entry/139350
• KERATOSIS PALMOPLANTARIS STRIATA III
 http://omim.org/entry/607654
• PALMOPLANTAR KERATODERMA, EPIDERMOLOYTIC
 http://omim.org/entry/144200
• PALMOPLANTAR KERATODERMA, NONEPIDERMOLYTIC
 http://omim.org/entry/600962
Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_KRT1.html
- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=KRT1%5Bgene%5D
- HGNC Gene Symbol Report
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:3848
- NCBI Gene
- UniProt
 https://www.uniprot.org/uniprot/P04264

Sources for This Summary

 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3142884/
- OMIM: ICHTHYOSIS HYSTRIX, CURTH-MACKLIN TYPE
 http://omim.org/entry/146590
- OMIM: ICHTHYOSIS, CYCLIC, WITH EPIDERMOLYTIC HYPERKERATOSIS
 http://omim.org/entry/607602
- OMIM: KERATIN 1, TYPE II
 http://omim.org/entry/139350
- OMIM: KERATOSIS PALMOPLANTARIS STRIATA III
 http://omim.org/entry/607654
- OMIM: PALMOPLANTAR KERATODERMA, EPIDERMOLYTIC
 http://omim.org/entry/144200
- OMIM: PALMOPLANTAR KERATODERMA, NONEPIDERMOLYTIC
 http://omim.org/entry/600962
Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1380725

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/7507151

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10084317

Reprinted from Genetics Home Reference:
https://ghr.nlm.nih.gov/gene/KRT1

Reviewed: November 2011
Published: February 12, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services