KCNA1 gene
potassium voltage-gated channel subfamily A member 1

Normal Function
The KCNA1 gene belongs to a large family of genes that provide instructions for making potassium channels. These channels, which transport positively charged atoms (ions) of potassium into and out of cells, play a key role in a cell's ability to generate and transmit electrical signals.

The KCNA1 gene provides instructions for making one part (the alpha subunit) of a potassium channel called Kv1.1. These channels are found in the brain, where they transport potassium ions into nerve cells (neurons). The flow of certain ions, including potassium, into and out of neurons regulates communication between these cells.

Health Conditions Related to Genetic Changes
Episodic ataxia
At least 20 mutations in the KCNA1 gene have been identified in people with episodic ataxia type 1 (EA1). People with this form of the condition have brief, recurrent episodes of poor coordination and balance (ataxia). Between episodes, many affected individuals experience myokymia, a muscle abnormality that can cause involuntary muscle cramping, stiffness, and continuous, fine muscle twitching that appears as rippling under the skin.

Most of the KCNA1 mutations responsible for episodic ataxia change single protein building blocks (amino acids) in the alpha subunit of the Kv1.1 channel. Some of these changes prevent the assembly of functional channels, while other mutations alter the channel's structure. When Kv1.1 channels are missing or abnormal, the flow of potassium ions into neurons is reduced. This decrease in potassium ions overexcites certain neurons in the brain, which disrupts normal communication between these cells. Although changes in signaling between neurons underlie the episodes of uncoordinated movement seen in people with episodic ataxia, it is unclear how altered potassium ion transport causes the specific features of the condition.

Other disorders
Mutations in the KCNA1 gene have been found to cause a range of signs and symptoms affecting the nervous system. In at least one family, isolated myokymia (continuous muscle twitching and spasms without episodes of ataxia) has been attributed to KCNA1 mutations. Changes in this gene have also been identified in a small number of people with epilepsy. Like the KCNA1 mutations that underlie
episodic ataxia, the mutations that cause isolated myokymia and epilepsy reduce the flow of potassium ions through Kv1.1 channels, disrupting normal communication between neurons in the brain. Researchers are working to determine why mutations in this single gene can cause several different disorders of the nervous system.

Chromosomal Location

Cytogenetic Location: 12p13.32, which is the short (p) arm of chromosome 12 at position 13.32

Molecular Location: base pairs 4,909,907 to 4,918,256 on chromosome 12 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Other Names for This Gene

- AEMK
- EA1
- HBK1
- HUK1
- KCNA1_HUMAN
- KV1.1
- MBK1
- MGC126782
- MGC138385
- MK1
- potassium channel, voltage gated shaker related subfamily A, member 1
- potassium voltage-gated channel, shaker-related subfamily, member 1 (episodic ataxia with myokymia)
- RBK1
- voltage-gated potassium channel subunit Kv1.1
Additional Information & Resources

Educational Resources

- Biochemistry (fifth edition, 2002): Specific Channels Can Rapidly Transport Ions Across Membranes
 https://www.ncbi.nlm.nih.gov/books/NBK22509/
- Neuromuscular Disease Center, Washington University: Potassium channels
 https://neuromuscular.wustl.edu/mother/chan.html#k

Clinical Information from GeneReviews

- Episodic Ataxia Type 1
 https://www.ncbi.nlm.nih.gov/books/NBK25442

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28KCNA1%5BTIAB%5D%29+OR+%28%28%28HBK1%5BTIAB%5D%29+OR+%28KV1.1%5BTIAB%5D%29%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- POTASSIUM CHANNEL, VOLTAGE-GATED, SHAKER-RELATED SUBFAMILY, MEMBER 1
 http://omim.org/entry/176260

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_KCNA1.html
- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=KCNA1%5Bgene%5D
- HGNC Gene Symbol Report
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:3736
- NCBI Gene
- UniProt
 https://www.uniprot.org/uniprot/Q09470
Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/7842011

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17136396
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1820748/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11026449

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17575281

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12077175

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17395136

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11773313
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290030/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9526001

Reprinted from Genetics Home Reference:
https://ghr.nlm.nih.gov/gene/KCNA1

Reviewed: August 2008
Published: May 14, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services