HOXA13 gene
homeobox A13

Normal Function

The HOXA13 gene provides instructions for producing a protein that attaches (binds) to specific regions of DNA and regulates the activity of other genes. On the basis of this role, the HOXA13 gene is called a transcription factor. The HOXA13 gene is part of a larger family of transcription factors called homeobox genes, which act during early embryonic development to control the formation of many body structures. Specifically, the HOXA13 protein appears to be critical for the formation and development of the limbs (particularly the hands and feet), urinary tract, and reproductive system.

The HOXA13 gene contains three areas where a protein building block (amino acid) called alanine is repeated multiple times. These stretches of alanines are known as polyalanine tracts or poly(A) tracts. The role of polyalanine tracts in normal HOXA13 function is unknown.

Health Conditions Related to Genetic Changes

Hand-foot-genital syndrome

At least 14 mutations in the HOXA13 gene have been found to cause hand-foot-genital syndrome. More than half of these mutations affect one of the polyalanine tracts in the HOXA13 gene. These mutations add extra alanines to these tracts, making them abnormally long and unstable. The resulting altered protein is degraded by the cell, so it is unavailable to regulate the activity of other genes during early development. These changes affect the development of the hands, feet, urinary tract, and reproductive system.

Other HOXA13 mutations result in the production of an abnormally short, nonfunctional version of the HOXA13 protein or change single amino acids in the protein. Mutations that substitute one amino acid for another amino acid may change the way the HOXA13 protein is folded. The altered protein may or may not function or bind to DNA normally. Mutations that result in an altered but functional HOXA13 protein may cause more severe signs and symptoms of hand-foot-genital syndrome than mutations that lead to a nonfunctional version of this protein.

Cancers

Chromosomal rearrangements (translocations) involving the short (p) arm of chromosome 7 have been associated with rare cases of leukemia, a cancer of blood-forming cells. These translocations disrupt the region of chromosome 7 that contains several similar homeobox genes, including HOXA13.
Within cancer cells, researchers have found translocations between chromosome 7 and chromosome 11 in several people with leukemia. These rearrangements abnormally fuse part of *HOXA13* or a similar gene on chromosome 7 to part of the *NUP98* gene on chromosome 11. The protein produced from the fused gene probably signals abnormal cells to continue dividing without control or order, which likely contributes to the development of cancer.

Chromosomal Location

Cytogenetic Location: 7p15.2, which is the short (p) arm of chromosome 7 at position 15.2

Molecular Location: base pairs 27,194,364 to 27,200,091 on chromosome 7 (Homo sapiens Updated Annotation Release 109.20200522, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- homeo box 1J
- homeo box A13
- Homeobox protein Hox-A13
- homeobox protein HOXA13
- Hox-1J
- HOX1
- HOX1J
- HXA13_HUMAN
- transcription factor HOXA13
Additional Information & Resources

Educational Resources

- Developmental Biology (sixth edition, 2000): Hox genes and the specification of the proximal-distal axis
 https://www.ncbi.nlm.nih.gov/books/NBK10102/#A3954

- Genetic Science Learning Center, University of Utah: Genes Determine Body Patterns
 https://learn.genetics.utah.edu/content/basics/hoxgenes/

Clinical Information from GeneReviews

- Hand-Foot-Genital Syndrome
 https://www.ncbi.nlm.nih.gov/books/NBK1423

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28HOXA13%5BTIAB%5D %29+OR+%28HOX1J%5BTIAB%5D%29%29+AND+%28%28Genes%5BMH%5D %29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bl% Ala %5D+AND+human%5Bmh%5D+AND+%22last+3600+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- HOMEOBOX A13
 http://omim.org/entry/142959

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_HOXA13.html

- ClinVar

- HGNC Gene Symbol Report

- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:3209

- NCBI Gene

- UniProt
 https://www.uniprot.org/uniprot/P31271
Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11830496

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10839976
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1287077/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11206481

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12357469

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15385446

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301596

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9020844

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12112533

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12073020

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17935235

Reviewed: April 2008
Published: June 9, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services