HADH gene
hydroxyacyl-CoA dehydrogenase

Normal Function

The HADH gene provides instructions for making an enzyme called 3-hydroxyacyl-CoA dehydrogenase that is important for converting certain fats to energy. This enzyme is involved in a process called fatty acid oxidation, in which several enzymes work in a step-wise fashion to break down (metabolize) fats and convert them to energy. The role of 3-hydroxyacyl-CoA dehydrogenase is to metabolize groups of fats called medium-chain fatty acids and short-chain fatty acids. These fatty acids are found in foods such as milk and certain oils and are produced when larger fatty acids are metabolized.

3-hydroxyacyl-CoA dehydrogenase functions in mitochondria, the energy-producing centers within cells. This enzyme is especially important for the normal functioning of the heart, liver, kidneys, muscles, and pancreas. The pancreas makes enzymes that help digest food, and it also produces insulin, which controls how much sugar is passed from the blood into cells for conversion to energy.

3-hydroxyacyl-CoA dehydrogenase is essential in the process that converts medium-chain and short-chain fatty acids to ketones, the major source of energy used by the heart and muscles. During prolonged periods without food (fasting) or when energy demands are increased, ketones are also important for the liver and other tissues.

Health Conditions Related to Genetic Changes

3-hydroxyacyl-CoA dehydrogenase deficiency

At least three mutations in the HADH gene have been found to cause 3-hydroxyacyl-CoA dehydrogenase deficiency. These mutations change single protein building blocks (amino acids) used to make the 3-hydroxyacyl-CoA dehydrogenase enzyme. These changes probably alter the 3-dimensional shape of the enzyme, which impairs its normal function.

With a shortage (deficiency) of functional 3-hydroxyacyl-CoA dehydrogenase, medium-chain and short-chain fatty acids are not metabolized properly. As a result, these fatty acids are not converted to energy, which can lead to signs and symptoms of 3-hydroxyacyl-CoA dehydrogenase deficiency such as lack of energy (lethargy) and low blood sugar (hypoglycemia). Medium-chain and short-chain fatty acids that are not broken down can build up in tissues and damage the liver, heart, and muscles, causing serious complications.

Congenital hyperinsulinism
Other disorders

Mutations in the *HADH* gene have been reported in a small number of people with familial hyperinsulinism. This disorder is characterized by abnormally high levels of insulin (hyperinsulinism) and unusually low blood sugar (hypoglycemia).

Researchers have identified at least five *HADH* gene mutations that cause familial hyperinsulinism. These mutations severely reduce 3-hydroxyacyl-CoA dehydrogenase activity, either by impairing the enzyme's function or by decreasing the amount of this enzyme in cells. Researchers believe that inadequate 3-hydroxyacyl-CoA dehydrogenase activity in the pancreas leads to excessive insulin secretion and hypoglycemia in people with familial hyperinsulinism. It is unclear why the *HADH* gene mutations that cause familial hyperinsulinism seem to affect only the pancreas.

Chromosomal Location

Cytogenetic Location: 4q25, which is the long (q) arm of chromosome 4 at position 25

Molecular Location: base pairs 107,989,714 to 108,035,175 on chromosome 4 (Homo sapiens Updated Annotation Release 109.20190905, GRCh38.p13) (NCBI)

Other Names for This Gene

- HAD
- HADH1
- HADHSC
- HCDH_HUMAN
- HHF4
- hydroxyacyl-Coenzyme A dehydrogenase
- L-3-hydroxyacyl-Coenzyme A dehydrogenase
- L-3-hydroxyacyl-Coenzyme A dehydrogenase, short chain
- M/SCHAD
- medium and short chain L-3-hydroxyacyl-coenzyme A dehydrogenase
• MGC8392
• SCHAD
• short chain 3-hydroxyacyl-CoA dehydrogenase

Additional Information & Resources

Educational Resources
• Biochemistry (fifth edition, 2002): Fatty Acid Metabolism
 https://www.ncbi.nlm.nih.gov/books/NBK21173/

Clinical Information from GeneReviews
• Familial Hyperinsulinism
 https://www.ncbi.nlm.nih.gov/books/NBK1375

Scientific Articles on PubMed
• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28HADH%5BTIAB%5D%29+OR+%28hydroxyacyl-Coenzyme+A+dehydrogenase%5BTIAB%5D%29+OR+%28SCHAD%5BALL%5D%29+OR+%28HADHSC%5BALL%5D%29+OR+%28M/SCHAD%5BALL%5D%29+NOT+%28Schad%5Bauthor%5D%29+AND+%28Genes%5BMH%5D+OR+%28Genetic+Phenomena%5BMH%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3600+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM
• 3-HYDROXYACYL-CoA DEHYDROGENASE
 http://omim.org/entry/601609

Research Resources
• ClinVar
• HGNC Gene Symbol Report
• Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:3033
• NCBI Gene
• UniProt
 https://www.uniprot.org/uniprot/Q16836
Sources for This Summary

- OMIM: 3-HYDROXYACYL-CoA DEHYDROGENASE
 http://omim.org/entry/601609

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16725361

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11489939
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC209352/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15870679

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19417036

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14693719

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16176262

Reprinted from Genetics Home Reference:

Reviewed: April 2010
Published: November 12, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services