GRHPR gene
glyoxylate and hydroxypyruvate reductase

Normal Function

The *GRHPR* gene provides instructions for making an enzyme called glyoxylate and hydroxypyruvate reductase. This enzyme plays a role in preventing the buildup of a potentially harmful substance called glyoxylate by converting it to a substance called glycolate, which is easily excreted from the body. Additionally, this enzyme can convert a compound called hydroxypyruvate to D-glycerate, which is eventually converted to the simple sugar glucose (by other enzymes) and used for energy.

Health Conditions Related to Genetic Changes

Primary hyperoxaluria

More than 25 mutations in the *GRHPR* gene have been found to cause primary hyperoxaluria type 2. This condition is caused by the overproduction of a substance called oxalate. Excess amounts of this substance lead to kidney and bladder stones, which begin in childhood and often result in kidney disease by early adulthood. Deposition of oxalate in multiple other tissues throughout the body (systemic oxalosis) can cause additional health problems.

GRHPR gene mutations either disrupt production of the glyoxylate and hydroxypyruvurate reductase enzyme or alter its structure. As a result, enzyme activity is absent or severely reduced and the conversion of glyoxylate to glycolate is impaired. Glyoxylate builds up and is converted to a compound called oxalate. The oxalate is filtered through the kidneys and is either excreted in urine as a waste product or combines with calcium to form calcium oxalate, a hard compound that is the main component of kidney and bladder stones. Increased oxalate levels in the blood can lead to systemic oxalosis, particularly affecting bones and the walls of blood vessels in people with primary hyperoxaluria type 2.
Chromosomal Location

Cytogenetic Location: 9p13.2, which is the short (p) arm of chromosome 9 at position 13.2

Molecular Location: base pairs 37,422,435 to 37,438,952 on chromosome 9 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Other Names for This Gene

• D-glycerate dehydrogenase
• GLXR
• glyoxylate reductase/hydroxypyruvate reductase
• GRHPR_HUMAN
• PH2

Additional Information & Resources

Clinical Information from GeneReviews

• Primary Hyperoxaluria Type 2
 https://www.ncbi.nlm.nih.gov/books/NBK2692

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28GRHPR%5BTIAB%5D
 %29+OR+%28glyoxylate+reductase/hydroxypyruvate+reductase%5BTIAB%5D
 %29%29+OR+%28GLXR%5BTIAB%5D%29+AND+english%5Bla%5D+AND
 +human%5Bmh%5D+AND+%22last+3600+days%22+AND+3600+days+AND+OMIM

Catalog of Genes and Diseases from OMIM

• GLYOXYLATE REDUCTASE/HYDROXYPYRUVATE REDUCTASE
 http://omim.org/entry/604296
Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_GRHPR.html

- ClinVar

- HGNC Gene Symbol Report
 https://www.genenames.org/cgi-bin/gene_symbol_report?q=data/hgnc_data.php&hgnc_id=4570

- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:9380

- NCBI Gene

- UniProt
 https://www.uniprot.org/uniprot/Q9UBQ7

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23944302

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14635115

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22688746

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15849464
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4756647/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301742

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11030416

Reprinted from Genetics Home Reference: