GNMT gene
glycine N-methyltransferase

Normal Function

The GNMT gene provides instructions for producing the enzyme glycine N-methyltransferase. This enzyme is involved in a multistep process that breaks down the protein building block (amino acid) methionine. Specifically, glycine N-methyltransferase starts a reaction that converts the compounds glycine and S-adenosylmethionine (also called AdoMet) to N-methylglycine and S-adenosylhomocysteine (also called AdoHcy).

This reaction also helps to control the relative amounts of AdoMet and AdoHcy. The AdoMet to AdoHcy ratio is important in many body processes, including the regulation of other genes by the addition of methyl groups, consisting of one carbon atom and three hydrogen atoms (methylation). Methylation is important in many cellular functions. These include determining whether the instructions in a particular segment of DNA are carried out, regulating reactions involving proteins and lipids, and controlling the processing of chemicals that relay signals in the nervous system (neurotransmitters).

The glycine N-methyltransferase enzyme is also involved in processing toxic compounds in the liver.

Health Conditions Related to Genetic Changes

Hypermethioninemia

Three mutations in the GNMT gene have been described in individuals with hypermethioninemia. In an Italian family, one mutation substitutes the amino acid proline for the amino acid leucine at protein position 49 (written as Leu49Pro or L49P) and another mutation substitutes the amino acid asparagine for the amino acid histidine at position 176 (written as His176Asn or H176N). In a Greek patient of Roma origin, a mutation was identified that substitutes the amino acid serine for the amino acid asparagine at position 140 (written as Asn140Ser or N140S). The reduced glycine N-methyltransferase activity resulting from these mutations causes hypermethioninemia in affected individuals.

Prostate cancer

Cancers

Certain inherited variations in the GNMT gene have been associated with an increased risk of liver and prostate cancers. Other GNMT gene mutations that have been found in cancerous tumors are acquired during a person's lifetime and are present only in certain cells. These changes, which are called somatic mutations,
are not inherited. *GNMT* gene mutations likely impair glycine N-methyltransferase functions such as processing potential cancer-causing substances in the liver and helping to regulate other genes, including those responsible for controlling cell growth. When cells grow too rapidly or in an uncontrolled way, a cancerous tumor can form.

Chromosomal Location

Cytogenetic Location: 6p21.1, which is the short (p) arm of chromosome 6 at position 21.1

Molecular Location: base pairs 42,960,754 to 42,963,880 on chromosome 6 (Homo sapiens Updated Annotation Release 109.20190905, GRCh38.p13) (NCBI)

Other Names for This Gene

- Glycine Methyltransferase
- Glycine Sarcosine Methyltransferase
- Glycine Sarcosine N-Methyltransferase
- GNMT_HUMAN

Additional Information & Resources

Educational Resources

- Biochemistry (fifth edition, 2002): Methionine Metabolism
 https://www.ncbi.nlm.nih.gov/books/NBK22453/?rendertype=figure&id=A3252

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28GNMT%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+last+3600+days%22%5Bdp%5D

Credit: Genome Decoration Page/NCBI
Catalog of Genes and Diseases from OMIM

- GLYCINE N-METHYLTRANSFERASE
 http://omim.org/entry/606628

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_GNMT.html
- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=GNMT%5Bgene%5D
- HGNC Gene Symbol Report
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:27232
- NCBI Gene
- UniProt
 https://www.uniprot.org/uniprot/Q14749

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14739680
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9261130
- Biochemistry (fifth edition, 2002): Methionine Metabolism
 https://www.ncbi.nlm.nih.gov/books/NBK22453/?rendertype=figure&id=A3252
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15150120
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17332283
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16779654
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792375/
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11810299

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14651980

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11596649

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9597750

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9018395

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12566309

Reprinted from Genetics Home Reference:

Reviewed: April 2007
Published: October 15, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services