GFAP gene

Glial fibrillary acidic protein

Normal Function

The *GFAP* gene provides instructions for making a protein called glial fibrillary acidic protein. This protein is a member of the intermediate filament family of proteins. Intermediate filaments form networks that provide support and strength to cells. Several molecules of glial fibrillary acidic protein bind together to form the type of intermediate filament found in astroglial cells. Astroglial cells support and nourish cells in the brain and spinal cord. If brain or spinal cord cells are injured through trauma or disease, astroglial cells react by rapidly producing more glial fibrillary acidic protein.

Although its function is not fully understood, glial fibrillary acidic protein is probably involved in controlling the shape, movement, and function of astroglial cells. Some researchers have suggested that astroglial cells play an important role in the functioning of other cells, including specialized cells that surround nerves (oligodendrocytes) and are involved in the production and long-term maintenance of myelin. Myelin is the fatty substance that forms a protective coating around certain nerve cells and ensures the rapid transmission of nerve impulses. Additionally, astroglial cells may assist in maintaining the protective barrier that allows only certain substances to pass between blood vessels and the brain (the blood-brain barrier).

Health Conditions Related to Genetic Changes

Alexander disease

Researchers have identified more than 50 *GFAP* mutations that cause Alexander disease. Most of these mutations change one of the building blocks (amino acids) used to make glial fibrillary acidic protein. A few mutations add or remove two amino acids in the protein. All of these changes alter the structure of glial fibrillary acidic protein. The altered protein probably disturbs the formation of normal intermediate filaments. As a result, the abnormal glial fibrillary acidic protein may accumulate in astroglial cells, contributing to the formation of Rosenthal fibers, which impair cell function. It is not well understood how impaired astroglial cells contribute to the abnormal maintenance of myelin, causing the signs and symptoms of Alexander disease.
Chromosomal Location

Cytogenetic Location: 17q21.31, which is the long (q) arm of chromosome 17 at position 21.31

Molecular Location: base pairs 44,905,626 to 44,915,552 on chromosome 17 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

• FLJ45472
• GFAP_HUMAN
• Glial Intermediate Filament Protein

Additional Information & Resources

Educational Resources

• Basic Neurochemistry (sixth edition, 1999): Neuronal and glial intermediate filaments provide support for neuronal and glial morphology

• Basic Neurochemistry (sixth edition, 1999): The human leukodystrophies are inherited disorders affecting central nervous system white matter
 https://www.ncbi.nlm.nih.gov/books/NBK28211/#A2795

• The Waisman Center
 https://www.waisman.wisc.edu/stem-cell-research-program/alexander-disease/

Clinical Information from GeneReviews

• Alexander Disease
 https://www.ncbi.nlm.nih.gov/books/NBK1172
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28GFAP%5BTIAB%5D
 %29+OR+%28glial+fibrillary+acidic+protein%5BTIAB%5D%29%29+AND+%28gli
 al+fibrillary+acidic+protein%5BMH%5D%29+OR+%28Genes%5BMH%5D
 %29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla
 %5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- GLIAL FIBRILLARY ACIDIC PROTEIN
 http://omim.org/entry/137780

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_GFAP.html

- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=GFAP%5Bgene%5D

- HGNC Gene Family: Intermediate filaments Type III
 https://www.genenames.org/cgi-bin/genefamilies/set/610

- HGNC Gene Symbol Report
 https://www.genenames.org/cgi-bin/gene_symbol_report?q=data/
 hgnc_data.php&hgnc_id=4235

- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:2670

- NCBI Gene

- UniProt
 https://www.uniprot.org/uniprot/P14136

Sources for This Summary

- Der Perng M, Su M, Wen SF, Li R, Gibbon T, Prescott AR, Brenner M, Quinlan RA. The Alexander
disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a
pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27. Am
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16826512
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1559481/

- Li R, Johnson AB, Salomons G, Goldman JE, Naidu S, Quinlan R, Cree B, Ruyle SZ, Banwell
 RO, Messing A, van der Knaap MS, Brenner M. Glial fibrillary acidic protein mutations in infantile,
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15732097
• Omary MB, Coulombe PA, McLean WH. Intermediate filament proteins and their associated
Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15537907

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17498694
Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702672/

Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC,
Smith RJH, Stephens K, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington,
Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301351

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16687524

Reprinted from Genetics Home Reference:

Reviewed: November 2008
Published: October 16, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services