FOLR1 gene
folate receptor 1

Normal Function

The FOLR1 gene provides instructions for making a protein called folate receptor alpha. This protein helps regulate transport of the B-vitamin folate into cells. Folate (also called vitamin B9) is needed for many processes, including the production and repair of DNA, regulation of gene activity (expression), and protein production. Folate from food is absorbed in the intestines and then released in a form called 5-methyl-tetrahydrofolate (5-MTHF) into the bloodstream, where it can be taken in by cells in various tissues.

Folate receptor alpha is found within the cell membrane, where it attaches (binds) to 5-MTHF, allowing the vitamin to be brought into the cell. Folate receptor alpha is produced in largest amounts in the brain, specifically in an area of the brain called the choroid plexus. This region releases cerebrospinal fluid (CSF), which surrounds and protects the brain and spinal cord. Folate receptor alpha is thought to play a major role in transporting folate from the bloodstream into brain cells. It transports folate across the choroid plexus and into the CSF, ultimately reaching the brain. In the brain, folate is needed for making chemical messengers called neurotransmitters and a fatty substance called myelin, which insulates nerve fibers and promotes the rapid transmission of nerve impulses. Both of these substances play essential roles in transmitting signals in the nervous system.

Health Conditions Related to Genetic Changes

Cerebral folate transport deficiency

At least 11 mutations in the FOLR1 gene have been found to cause cerebral folate transport deficiency, a disorder characterized by neurological problems that begin around age 2. Most of these mutations change single protein building blocks (amino acids) in folate receptor alpha. FOLR1 gene mutations result in a lack of protein or malfunctioning protein. Without folate receptor alpha in brain cells, 5-MTHF in the bloodstream cannot be transported into the CSF and passed to the brain. A shortage (deficiency) of folate in the brain impairs normal cell functions such as the production of DNA, proteins, and neurotransmitters. Folate deficiency affects the stability of myelin, leading to impaired production or increased breakdown of this tissue, a condition known as leukodystrophy. These brain abnormalities caused by a lack of folate lead to the intellectual disability, movement problems, and recurrent seizures (epilepsy) typical of cerebral folate transport deficiency.
Chromosomal Location

Cytogenetic Location: 11q13.4, which is the long (q) arm of chromosome 11 at position 13.4

Molecular Location: base pairs 72,189,709 to 72,196,323 on chromosome 11 (Homo sapiens Updated Annotation Release 109.20191205, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- adult folate-binding protein
- FBP
- folate binding protein
- folate receptor 1 (adult)
- folate receptor alpha
- folate receptor, adult
- FOLR
- FR-alpha
- KB cells FBP

Additional Information & Resources

Educational Resources

- Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline: Folate
 https://www.ncbi.nlm.nih.gov/books/NBK114318/
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28FOLR1%5BTIAB%5D%29+OR+%28folate+receptor+alpha%5BTIAB%5D%29%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bl%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- FOLATE RECEPTOR 1, ADULT
 http://omim.org/entry/136430

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_FOLR1.html
- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=FOLR1%5Bgene%5D
- HGNC Gene Symbol Report
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:2348
- NCBI Gene
- UniProt
 https://www.uniprot.org/uniprot/P15328

Sources for This Summary

- OMIM: FOLATE RECEPTOR 1, ADULT
 http://omim.org/entry/136430
Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19732866
Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771535/

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22108709

Reprinted from Genetics Home Reference:
https://ghr.nlm.nih.gov/gene/FOLR1

Reviewed: September 2014
Published: February 11, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services