FAH gene
fumarylacetoacetate hydrolase

Normal Function
The *FAH* gene provides instructions for making an enzyme called fumarylacetoacetate hydrolase. This enzyme is abundant in the liver and kidneys, and smaller amounts are found in many tissues throughout the body. Fumarylacetoacetate hydrolase is the last in a series of five enzymes that work to break down the amino acid tyrosine, a protein building block found in many foods. Specifically, fumarylacetoacetate hydrolase converts a tyrosine byproduct called fumarylacetoacetate into smaller molecules that are either excreted by the kidneys or used to produce energy or make other substances in the body.

Health Conditions Related to Genetic Changes

Tyrosinemia

At least 86 *FAH* mutations have been found that cause tyrosinemia type I. This condition is characterized by severe liver and kidney disease, neurological problems, and other signs and symptoms that begin in infancy. The altered *FAH* gene that causes this condition produces an unstable or inactive enzyme, which results in reduced or absent fumarylacetoacetate hydrolase activity. The most common *FAH* mutation disrupts the way the gene’s instructions are used to make the enzyme. This mutation (written IVS12 + 5G>A) is called a splice-site mutation and results in an abnormally short enzyme. Without sufficient fumarylacetoacetate hydrolase activity, tyrosine and its byproducts are not properly broken down. As a result, fumarylacetoacetate accumulates in the liver and kidneys. Elevated levels of fumarylacetoacetate are thought to be toxic to cells and accumulation of this substance likely causes the liver and kidney problems and other features that are characteristic of tyrosinemia type I.

In several cases of tyrosinemia type I, the *FAH* gene mutation has been observed to revert to the normal state in some liver cells. If enough cells have the reverted gene, which produces normal fumarylacetoacetate hydrolase, some level of enzyme activity is achieved. Researchers have found a correlation between the severity of symptoms and the extent of reversion in liver cells. People with severe symptoms of tyrosinemia type I have few reverted cells, while those with milder symptoms have many cells with the reverted *FAH* gene.
Chromosomal Location

Cytogenetic Location: 15q25.1, which is the long (q) arm of chromosome 15 at position 25.1

Molecular Location: base pairs 80,152,823 to 80,186,949 on chromosome 15 (Homo sapiens Updated Annotation Release 109.20190905, GRCh38.p13) (NCBI)

Other Names for This Gene

- beta-diketonase
- FAA
- FAAA_HUMAN
- fumarylacetoacetase
- fumarylacetoacetate hydrolase (fumarylacetoacetase)

Additional Information & Resources

Educational Resources

- Biochemistry (fifth edition, 2002): Phenylalanine and Tyrosine Degradation (figure)
 https://www.ncbi.nlm.nih.gov/books/NBK22453/figure/A3256/?report=objectonly

Clinical Information from GeneReviews

- Tyrosinemia Type I
 https://www.ncbi.nlm.nih.gov/books/NBK1515

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28FAH%5BTIAB%5D%29+OR+%28fumarylacetoacetate+hydrolase%5BTIAB%5D%29+OR+%28fumarylacetoacetase%5BTIAB%5D%29+AND+%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+2520+days%22%5Bdp%5D
Catalog of Genes and Diseases from OMIM

- **FUMARYLACETOACETATE HYDROLASE**

http://omim.org/entry/613871

Research Resources

- **ClinVar**

https://www.ncbi.nlm.nih.gov/clinvar?term=FAH%5Bgene%5D

- **HGNC Gene Symbol Report**

- **Monarch Initiative**

https://monarchinitiative.org/gene/NCBIGene:2184

- **NCBI Gene**

- **UniProt**

https://www.uniprot.org/uniprot/P16930

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12203990

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14691918

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24552869

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23895425

Reprinted from Genetics Home Reference:

Reviewed: August 2015
Published: November 26, 2019