EIF2B5 gene

eukaryotic translation initiation factor 2B subunit epsilon

Normal Function

The *EIF2B5* gene provides instructions for making one of five parts of a protein called eIF2B, specifically the epsilon subunit of this protein. The eIF2B protein helps regulate overall protein production (synthesis) in the cell by interacting with another protein, eIF2. The eIF2 protein is called an initiation factor because it is involved in starting (initiating) protein synthesis.

Under some conditions, eIF2B increases protein synthesis by helping to recycle molecules called GTP, which carry energy to the initiation factor. Under other conditions, it slows protein synthesis by binding tightly to the initiation factor, which converts the eIF2B protein into an inactive form and prevents recycling of GTP.

Proper regulation of protein synthesis is vital for ensuring that the correct levels of protein are available for the cell to cope with changing conditions. For example, cells must synthesize protein much faster if they are multiplying than if they are in a resting state.

Health Conditions Related to Genetic Changes

Leukoencephalopathy with vanishing white matter

Mutations in the *EIF2B5* gene have been identified in about 65 percent of people with leukoencephalopathy with vanishing white matter, including those with a severe, early-onset form that is seen among the Cree and Chippewayan populations of Quebec and Manitoba (Cree leukoencephalopathy) and some affected females with a variant of the disorder in which the neurological features are accompanied by ovarian failure (ovarioleukodystrophy). These mutations cause partial loss of eIF2B function. Impairment of eIF2B function makes it more difficult for the body’s cells to regulate protein synthesis and deal with changing conditions and stress. Researchers believe that cells in the white matter (nerve fibers covered by a fatty substance called myelin that insulates and protects nerves) may be particularly affected by an abnormal response to stress, resulting in the signs and symptoms of leukoencephalopathy with vanishing white matter.
Chromosomal Location

Cytogenetic Location: 3q27.1, which is the long (q) arm of chromosome 3 at position 27.1

Molecular Location: base pairs 184,135,023 to 184,145,311 on chromosome 3 (Homo sapiens Updated Annotation Release 109.20200228, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- CACH
- CLE
- EI2BE_HUMAN
- EIF-2B
- eIF-2B GDP-GTP exchange factor
- EIF2Bepsilon
- eukaryotic translation initiation factor 2B, subunit 5 (epsilon, 82kD)
- eukaryotic translation initiation factor 2B, subunit 5 epsilon, 82kDa
- LVWM

Additional Information & Resources

Educational Resources

- Eurekah Bioscience: Mechanism of Translation Initiation in Eukaryotes
 https://www.ncbi.nlm.nih.gov/books/NBK6597/

 https://www.ncbi.nlm.nih.gov/books/NBK26890/#A1387
Clinical Information from GeneReviews

- Childhood Ataxia with Central Nervous System Hypomyelination/Vanishing White Matter
 https://www.ncbi.nlm.nih.gov/books/NBK1258

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28EIF2B5%5BTIAB%5D%29+OR+%28CACH%5BTIAB%5D%29%29+AND+%28Genes%5BMH%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1440+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- EUKARYOTIC TRANSLATION INITIATION FACTOR 2B, SUBUNIT 5
 http://omim.org/entry/603945

Research Resources

- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=EIF2B5%5Bgene%5D

- HGNC Gene Symbol Report

- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:8893

- NCBI Gene

- UniProt
 https://www.uniprot.org/uniprot/Q13144

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15723074

- OMIM: EUKARYOTIC TRANSLATION INITIATION FACTOR 2B, SUBUNIT 5
 http://omim.org/entry/603945

- Eurekah Bioscience: Mechanism of Translation Initiation in Eukaryotes
 https://www.ncbi.nlm.nih.gov/books/NBK6597/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16246171
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15054402

• Li W, Wang X, Van Der Knaap MS, Proud CG. Mutations linked to leukoencephalopathy with vanishing white matter impair the function of the eukaryotic initiation factor 2B complex in diverse ways. Mol Cell Biol. 2004 Apr;24(8):3295-306.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15060152
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC381664/

• Molecular Biology of the Cell (fourth edition, 2002): The Phosphorylation of an Initiation Factor Globally Regulates Protein Synthesis
 https://www.ncbi.nlm.nih.gov/books/NBK26890/#A1387

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16246152

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16807905

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16998732

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16545608

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16825957

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16141786

Reviewed: October 2007
Published: March 17, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services