EDAR gene
ectodysplasin A receptor
The EDAR gene provides instructions for making a protein called the ectodysplasin A receptor. This protein is part of a signaling pathway that plays an important role in development before birth. Specifically, it is critical for interactions between two embryonic cell layers called the ectoderm and the mesoderm. In the early embryo, these cell layers form the basis for many of the body's organs and tissues. Ectoderm-mesoderm interactions are essential for the formation of several structures that arise from the ectoderm, including the skin, hair, nails, teeth, and sweat glands.
The ectodysplasin A receptor interacts with a protein called ectodysplasin A1 (produced from the EDA gene). On the cell surface, ectodysplasin A1 attaches to this receptor like a key in a lock. When these two proteins are connected, they trigger a series of chemical signals that affect cell activities such as division, growth, and maturation. Before birth, this signaling pathway controls the formation of ectodermal structures such as hair follicles, sweat glands, and teeth.
Related Information
About 20 mutations in the EDAR gene have been identified in people with hypohidrotic ectodermal dysplasia. Most of these mutations change a single protein building block (amino acid) in the receptor protein, although deletions of genetic material from the EDAR gene also occur. Some EDAR mutations lead to the production of an abnormal version of the ectodysplasin A receptor. These genetic changes disrupt the signaling pathway needed for the formation of ectodermal structures such as hair follicles and sweat glands. When this type of mutation is present in one copy of the EDAR gene in each cell, it results in the autosomal dominant form of hypohidrotic ectodermal dysplasia.
Other EDAR mutations prevent cells from producing any ectodysplasin A receptor protein. As a result, the receptor is not available to trigger chemical signals that are necessary for ectoderm-mesoderm interactions and the normal development of ectodermal structures. This type of mutation, when present in two copies of the EDAR gene in each cell, causes an autosomal recessive form of hypohidrotic ectodermal dysplasia.
Related Information
Cytogenetic Location: 2q13, which is the long (q) arm of chromosome 2 at position 13
Molecular Location: base pairs 108,894,471 to 108,989,372 on chromosome 2 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Related Information
- DL
- ectodysplasin 1, anhidrotic receptor
- ectodysplasin A1 isoform receptor
- ectodysplasin receptor
- ED1R
- ED3
- ED5
- EDA-A1R
- EDA1R
- EDA3
- EDAR_HUMAN
Related Information
- Arte S, Parmanen S, Pirinen S, Alaluusua S, Nieminen P. Candidate gene analysis of tooth agenesis identifies novel mutations in six genes and suggests significant role for WNT and EDA signaling and allele combinations. PLoS One. 2013 Aug 22;8(8):e73705. doi: 10.1371/journal.pone.0073705. eCollection 2013.
- Azeem Z, Naqvi SK, Ansar M, Wali A, Naveed AK, Ali G, Hassan MJ, Tariq M, Basit S, Ahmad W. Recurrent mutations in functionally-related EDA and EDAR genes underlie X-linked isolated hypodontia and autosomal recessive hypohidrotic ectodermal dysplasia. Arch Dermatol Res. 2009 Sep;301(8):625-9. doi: 10.1007/s00403-009-0975-1. Epub 2009 Jun 24.
- Bashyam MD, Chaudhary AK, Reddy EC, Reddy V, Acharya V, Nagarajaram HA, Devi AR, Bashyam L, Dalal AB, Gupta N, Kabra M, Agarwal M, Phadke SR, Tainwala R, Kumar R, Hariharan SV. A founder ectodysplasin A receptor (EDAR) mutation results in a high frequency of the autosomal recessive form of hypohidrotic ectodermal dysplasia in India. Br J Dermatol. 2012 Apr;166(4):819-29. doi: 10.1111/j.1365-2133.2011.10707.x. Epub 2012 Mar 5.
- Cluzeau C, Hadj-Rabia S, Jambou M, Mansour S, Guigue P, Masmoudi S, Bal E, Chassaing N, Vincent MC, Viot G, Clauss F, Manière MC, Toupenay S, Le Merrer M, Lyonnet S, Cormier-Daire V, Amiel J, Faivre L, de Prost Y, Munnich A, Bonnefont JP, Bodemer C, Smahi A. Only four genes (EDA1, EDAR, EDARADD, and WNT10A) account for 90% of hypohidrotic/anhidrotic ectodermal dysplasia cases. Hum Mutat. 2011 Jan;32(1):70-2. doi: 10.1002/humu.21384.
- Monreal AW, Ferguson BM, Headon DJ, Street SL, Overbeek PA, Zonana J. Mutations in the human homologue of mouse dl cause autosomal recessive and dominant hypohidrotic ectodermal dysplasia. Nat Genet. 1999 Aug;22(4):366-9.
- Naeem M, Muhammad D, Ahmad W. Novel mutations in the EDAR gene in two Pakistani consanguineous families with autosomal recessive hypohidrotic ectodermal dysplasia. Br J Dermatol. 2005 Jul;153(1):46-50.
- Wiśniewski SA, Kobielak A, Trzeciak WH, Kobielak K. Recent advances in understanding of the molecular basis of anhidrotic ectodermal dysplasia: discovery of a ligand, ectodysplasin A and its two receptors. J Appl Genet. 2002;43(1):97-107. Review.
- Wohlfart S, Hammersen J, Schneider H. Mutational spectrum in 101 patients with hypohidrotic ectodermal dysplasia and breakpoint mapping in independent cases of rare genomic rearrangements. J Hum Genet. 2016 Oct;61(10):891-897. doi: 10.1038/jhg.2016.75. Epub 2016 Jun 16.
- Wright JT, Grange DK, Fete M. Hypohidrotic Ectodermal Dysplasia. 2003 Apr 28 [updated 2017 Jun 1]. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2017. Available from http://www.ncbi.nlm.nih.gov/books/NBK1112/
- Wu S, Tan J, Yang Y, Peng Q, Zhang M, Li J, Lu D, Liu Y, Lou H, Feng Q, Lu Y, Guan Y, Zhang Z, Jiao Y, Sabeti P, Krutmann J, Tang K, Jin L, Xu S, Wang S. Genome-wide scans reveal variants at EDAR predominantly affecting hair straightness in Han Chinese and Uyghur populations. Hum Genet. 2016 Nov;135(11):1279-1286. Epub 2016 Aug 3.
- Zeng B, Zhao Q, Li S, Lu H, Lu J, Ma L, Zhao W, Yu D. Novel EDA or EDAR Mutations Identified in Patients with X-Linked Hypohidrotic Ectodermal Dysplasia or Non-Syndromic Tooth Agenesis. Genes (Basel). 2017 Oct 5;8(10). pii: E259. doi: 10.3390/genes8100259.

