EBP gene
EBP, cholestenol delta-isomerase

Normal Function

The *EBP* gene provides instructions for making an enzyme called 3\(\beta\)-hydroxysteroid-\(\Delta^8,\Delta^7\)-isomerase. This enzyme is responsible for one of the final steps in the production of cholesterol. Specifically, it converts a molecule called 8(9)-cholestenol to lathosterol. Other enzymes then modify lathosterol to produce cholesterol.

Cholesterol is a waxy, fat-like substance that is produced in the body and obtained from foods that come from animals (particularly egg yolks, meat, poultry, fish, and dairy products). Although too much cholesterol is a risk factor for heart disease, this molecule is necessary for normal embryonic development and has important functions both before and after birth. It is a structural component of cell membranes and plays a role in the production of certain hormones and acids used in digestion (bile acids).

Health Conditions Related to Genetic Changes

X-linked chondrodysplasia punctata 2

More than 55 mutations in the *EBP* gene have been found to cause X-linked chondrodysplasia punctata 2, a condition that occurs almost exclusively in females and is characterized by bone, skin, and eye abnormalities. Some of the mutations responsible for this condition in females insert or delete a small amount of genetic material from the *EBP* gene, while others change single protein building blocks (amino acids) in the 3\(\beta\)-hydroxysteroid-\(\Delta^8,\Delta^7\)-isomerase enzyme. All of these mutations impair the normal function of the enzyme, preventing cells from producing enough cholesterol. A shortage of this enzyme also allows potentially toxic byproducts of cholesterol production to build up in the body. The combination of low cholesterol levels and an accumulation of other substances likely disrupts the growth and development of many body systems. It is not known, however, how this disturbance in cholesterol production leads to the specific features of X-linked chondrodysplasia punctata 2.

Rarely, a severe form of X-linked chondrodysplasia punctata 2 has been reported in males. These cases result from changes involving single amino acids in the 3\(\beta\)-hydroxysteroid-\(\Delta^8,\Delta^7\)-isomerase enzyme. Affected males have some of the same features as affected females, as well as changes in the structure of the brain, moderately to profoundly delayed development, and other birth defects.
Chromosomal Location

Cytogenetic Location: Xp11.23, which is the short (p) arm of the X chromosome at position 11.23

Molecular Location: base pairs 48,521,808 to 48,528,716 on the X chromosome (Homo sapiens Updated Annotation Release 109.20190905, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- 3-beta-hydroxysteroid-delta-8,delta-7-isomerase
- 3-beta-hydroxysteroid-Delta(8),Delta(7)-isomerase
- CDPX2
- CPXD
- D8-D7 sterol isomerase
- delta(8)-Delta(7) sterol isomerase
- EBP_HUMAN
- emopamil binding protein (sterol isomerase)
- emopamil-binding protein (sterol isomerase)
- sterol 8-isomerase

Additional Information & Resources

Educational Resources

 https://www.ncbi.nlm.nih.gov/books/NBK22350/

Clinical Information from GeneReviews

- Chondrodysplasia Punctata 2, X-Linked
 https://www.ncbi.nlm.nih.gov/books/NBK55062
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28EBP%5BTI%5D%29+OR+%28emopamil+binding+protein%5BTI%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29+NOT+%28c/EBP%5BTIAB%5D%29+NOT+%28enterococc%5BTIAB%5D%29+AND+%28%28EBP%5BTIAB%5D%29+AND+english%5Bl%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22+AND+human%5Bmh%5D+AND+%22last+1800+days%22+AND+human%5Bmh%5D

Catalog of Genes and Diseases from OMIM

- EMOPAMIL-BINDING PROTEIN
 http://omim.org/entry/300205

Research Resources

- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=EBP%5Bgene%5D

- HGNC Gene Symbol Report

- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:10682

- NCBI Gene

- UniProt
 https://www.uniprot.org/uniprot/Q15125

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18573709

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10391219

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20949533
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12509714

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11038443

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12503101

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17949453

Reprinted from Genetics Home Reference:

Reviewed: November 2011
Published: November 12, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services