DPYD gene
dihydropyrimidine dehydrogenase

Normal Function
The *DPYD* gene provides instructions for making an enzyme called dihydropyrimidine dehydrogenase, which is involved in the breakdown of molecules called uracil and thymine when they are not needed. Uracil and thymine are pyrimidines, which are one type of nucleotide. Nucleotides are building blocks of DNA, its chemical cousin RNA, and molecules such as ATP and GTP that serve as energy sources in the cell.

Dihydropyrimidine dehydrogenase is involved in the first step of the breakdown of pyrimidines. This enzyme converts uracil to another molecule called 5,6-dihydrouracil and converts thymine to 5,6-dihydrothymine. The molecules created when pyrimidines are broken down are excreted by the body or used in other cellular processes.

Health Conditions Related to Genetic Changes

Dihydropyrimidine dehydrogenase deficiency
More than 50 mutations in the *DPYD* gene have been identified in people with dihydropyrimidine dehydrogenase deficiency. *DPYD* gene mutations interfere with the breakdown of uracil and thymine and result in excess quantities of these molecules in the blood, urine, and the fluid that surrounds the brain and spinal cord (cerebrospinal fluid). It is unclear how the excess uracil and thymine are related to the specific neurological problems that affect some people with dihydropyrimidine dehydrogenase deficiency.

Mutations in the *DPYD* gene also interfere with the breakdown of drugs with structures similar to the pyrimidines, such as the cancer drugs 5-fluorouracil and capecitabine. As a result, these drugs accumulate in the body and cause the severe reactions that can occur in people with dihydropyrimidine dehydrogenase deficiency.

Coloboma
Chromosomal Location

Cytogenetic Location: 1p21.3, which is the short (p) arm of chromosome 1 at position 21.3

Molecular Location: base pairs 97,077,743 to 97,921,059 on chromosome 1 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Other Names for This Gene

• DHP
• DHPDHASE
• dihydropyrimidine dehydrogenase [NADP+]
• dihydrothymine dehydrogenase
• dihydouracil dehydrogenase
• DPD
• DPYD_HUMAN
• MGC132008
• MGC70799

Additional Information & Resources

Educational Resources

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28DPYD%5BTIAB%5D%29+OR+%28dihydropyrimidine+dehydrogenase%5BTIAB%5D%29%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+720+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- DIHYDROPYRIMIDINE DEHYDROGENASE
 http://omim.org/entry/612779

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_DPYD.html

- ClinVar

- HGNC Gene Symbol Report
 https://www.genenames.org/cgi-bin/gene_symbol_report?q=data/hgnc_data.php&hgnc_id=3012

- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:1806

- NCBI Gene

- UniProt
 https://www.uniprot.org/uniprot/Q12882

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16151913

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20920994

- OMIM: DIHYDROPYRIMIDINE DEHYDROGENASE
 http://omim.org/entry/612779

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17000684
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16421754

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10071185

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12542909

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11988088
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1222557/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19296131

Reprinted from Genetics Home Reference:

Reviewed: November 2011
Published: November 7, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services