DDC gene
dopa decarboxylase

Normal Function

The *DDC* gene provides instructions for making the aromatic l-amino acid decarboxylase (AADC) enzyme, which is important in the brain and nervous system. This enzyme takes part in the pathway that produces dopamine and serotonin, which are chemical messengers that transmit signals between nerve cells (neurotransmitters).

Dopamine is produced from the protein building block (amino acid) tyrosine, and serotonin is produced from the amino acid tryptophan. Both neurotransmitters are produced in two-step processes. First, other enzymes control the reactions that convert tyrosine to L-dopa, and tryptophan to 5-hydroxytryptophan. The AADC enzyme then converts L-dopa and 5-hydroxytryptophan to dopamine and serotonin, respectively. To do this, it removes a molecular structure called a carboxyl group, consisting of a carbon atom, two oxygen atoms, and a hydrogen atom.

Health Conditions Related to Genetic Changes

Aromatic l-amino acid decarboxylase deficiency

Mutations in the *DDC* gene result in reduced activity of the AADC enzyme. Without enough of this enzyme, nerve cells produce less dopamine and serotonin. Dopamine and serotonin are necessary for normal nervous system function, and changes in the levels of these neurotransmitters contribute to the developmental delay, intellectual disability, abnormal movements, and autonomic dysfunction seen in people with AADC deficiency.

Other disorders

Studies have shown certain variations (polymorphisms) in the *DDC* gene to be associated with increased risk of nicotine dependence, schizophrenia, bipolar disorder, and attention deficit hyperactivity disorder; however, other studies have not supported these findings. Many genetic and environmental factors are believed to contribute to these complex conditions.
Chromosomal Location

Cytogenetic Location: 7p12.2-p12.1, which is the short (p) arm of chromosome 7 between positions 12.2 and 12.1

Molecular Location: base pairs 50,458,436 to 50,565,460 on chromosome 7 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Other Names for This Gene

- AADC
- aromatic L-amino acid decarboxylase
- dopa decarboxylase (aromatic L-amino acid decarboxylase)

Additional Information & Resources

Educational Resources

- Basic Neurochemistry (sixth edition, 1999): Dopa Decarboxylase Catalyzes the Removal of the Carboxyl Group from DOPA to Form Dopamine
 https://www.ncbi.nlm.nih.gov/books/NBK27988/#A862

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28DDC%5BTIAB%5D%29+OR+%28dopa+decarboxylase%5BTIAB%5D%29%29+OR+%28%28AADC%5BTIAB%5D%29+OR+%28aromatic+L-amino+acid+decarboxylase%5BTIAB%5D%29%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1080+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- DOPA DECARBOXYLASE
 http://omim.org/entry/107930
Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/DDCID50590ch7p12.html
- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=DDC%5Bgene%5D
- HGNC Gene Symbol Report
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:1644
- NCBI Gene
- UniProt
 https://www.uniprot.org/uniprot/P20711

Sources for This Summary

- OMIM: DOPA DECARBOXYLASE
 http://omim.org/entry/107930
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1357595
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17513427
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16298354
- Pearl PL, Taylor JL, Trzcinski S, Sokohl A. The pediatric neurotransmitter disorders. J Child Neurol. 2007 May;22(5):606-16. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17690069
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17240182
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16740595
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17184203