CYBB gene

cytochrome b-245 beta chain

Normal Function

The CYBB gene provides instructions for making a protein called cytochrome b-245, beta chain (also known as p91-phox). This protein is one part (subunit) of a group of proteins that forms an enzyme complex called NADPH oxidase, which plays an essential role in the immune system. Within this complex, the cytochrome b-245, beta chain has an alpha chain partner (produced from the CYBA gene). Both alpha and beta chains are required for either to function and the NADPH oxidase complex requires both chains in order to be functional. NADPH oxidase is primarily active in immune system cells called phagocytes. These cells catch and destroy foreign invaders such as bacteria and fungi. NADPH oxidase is also thought to regulate the activity of immune cells called neutrophils. These cells play a role in adjusting the inflammatory response to optimize healing and reduce injury to the body.

The presence of foreign invaders stimulates phagocytes and triggers the assembly of NADPH oxidase. This enzyme participates in a chemical reaction that converts oxygen to a toxic molecule called superoxide. Superoxide is used to generate several other compounds, including hydrogen peroxide (a strong disinfectant) and hypochlorous acid (the active ingredient in bleach). These highly reactive, toxic substances are known as reactive oxygen species. Phagocytes use these substances to kill foreign invaders, preventing them from reproducing in the body and causing illness.

Health Conditions Related to Genetic Changes

Chronic granulomatous disease

More than 650 mutations in the CYBB gene have been found to cause chronic granulomatous disease. People with this disorder are at increased risk of developing recurrent episodes of infection and inflammation due to a weakened immune system. Mutations in the CYBB gene cause approximately 70 percent of all cases of this condition. Most of these mutations change single building blocks of protein (amino acids) in the cytochrome b-245 beta chain or cause it to be abnormally short and nonfunctional. An altered protein not only diminishes the function of the beta chain, but the function of its alpha chain partner as well. Without these subunits, NADPH oxidase cannot assemble or function properly. As a result, phagocytes are unable to produce reactive oxygen species to kill foreign invaders, and neutrophil activity is not regulated. A lack of NADPH oxidase leaves affected individuals vulnerable to many types of infection and excessive inflammation.
Chromosomal Location

Cytogenetic Location: Xp21.1-p11.4, which is the short (p) arm of the X chromosome between positions 21.1 and 11.4

Molecular Location: base pairs 37,780,059 to 37,813,461 on the X chromosome (Homo sapiens Updated Annotation Release 109.20190905, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- CGD91-phox
- CY24B_HUMAN
- cytochrome b-245 heavy chain
- cytochrome b-245, beta polypeptide
- cytochrome b(558) subunit beta
- cytochrome b558 subunit beta
- GP91-1
- GP91PHOX
- neutrophil cytochrome b 91 kDa polypeptide
- p91-PHOX
- superoxide-generating NADPH oxidase heavy chain subunit

Additional Information & Resources

Educational Resources

- Immunobiology: The Immune System in Health and Disease (2001, fifth edition): After entering tissues, many pathogens are recognized, ingested, and killed by phagocytes
 https://www.ncbi.nlm.nih.gov/books/NBK27105/#A156

 https://www.ncbi.nlm.nih.gov/books/NBK27109/#A1507
Clinical Information from GeneReviews

- Chronic Granulomatous Disease
 https://www.ncbi.nlm.nih.gov/books/NBK99496

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28CYBB%5BTIAB%5D%29+OR+%28NOX2%5BTIAB%5D%29+OR+%28p91phox%5BTIAB%5D%29%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1080+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- CYTOCHROME b(-245), BETA SUBUNIT
 http://omim.org/entry/300481

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_CYBB.html

- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=CYBB%5Bgene%5D

- HGNC Gene Symbol Report

- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:1536

- NCBI Gene

- UniProt
 https://www.uniprot.org/uniprot/P04839

Sources for This Summary

- OMIM: CYTOCHROME b(-245), BETA SUBUNIT
 http://omim.org/entry/300481

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18546332
• Roos D, Kuhns DB, Maddalena A, Roesler J, Lopez JA, Ariga T, Avrin T, de Boer M, Bustamante
 J, Condino-Neto A, Di Matteo G, He J, Hill HR, Holland SM, Kannengiesser C, Köker MY,
 Kondratenko I, van Leeuwen K, Malech HL, Marodi L, Nunoi H, Stasia MJ, Ventura AM, Witwer CT,
 Wolach B, Gallin JI. Hematologically important mutations: X-linked chronic granulomatous disease
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20729109
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4360070/

• Stasia MJ, Li XJ. Genetics and immunopathology of chronic granulomatous disease. Semin
 Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18509647

• Sumimoto H. Structure, regulation and evolution of Nox-family NADPH oxidases that
 3984.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18513324

Reprinted from Genetics Home Reference:

Reviewed: August 2012
Published: October 29, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services