CPS1 gene
carbamoyl-phosphate synthase 1

Normal Function

The CPS1 gene provides instructions for making the enzyme carbamoyl phosphate synthetase I. This enzyme participates in the urea cycle, a series of reactions that occurs in liver cells. The urea cycle processes excess nitrogen, generated when protein is used by the body, into a compound called urea that is excreted by the kidneys. Excreting the excess nitrogen prevents it from accumulating in the form of ammonia, which is toxic.

The specific role of carbamoyl phosphate synthetase I is to control the first step of the urea cycle, a reaction in which excess nitrogen compounds are incorporated into the cycle to be processed.

Health Conditions Related to Genetic Changes

Carbamoyl phosphate synthetase I deficiency

Approximately 10 mutations that cause carbamoyl phosphate synthetase I deficiency have been identified in the CPS1 gene. A mutated CPS1 gene may result in a carbamoyl phosphate synthetase I enzyme that is shorter than normal or the wrong shape, or may prevent the enzyme from being produced at all.

The shape of an enzyme affects its ability to control a chemical reaction. If the carbamoyl phosphate synthetase enzyme is misshapen or missing, it cannot fulfill its role in the urea cycle. Excess nitrogen is not converted to urea for excretion, and ammonia accumulates in the body. Ammonia is toxic, especially to the nervous system, so this accumulation causes neurological problems and other signs and symptoms of carbamoyl phosphate synthetase I deficiency.

Other disorders

One common alteration (polymorphism) in the CPS1 gene has been associated with increased risk of circulatory problems in newborns and in individuals who have received bone marrow transplants. This genetic change results in the amino acid (protein building block) asparagine being substituted for the amino acid threonine at position 1405 in the protein sequence (written as Thr1405Asn or T1405N).

Researchers believe that this polymorphism in the CPS1 gene may reduce the production of a compound called nitric oxide (NO). Normally, nitric oxide causes blood vessels to expand (dilate), which reduces blood pressure. A reduced amount of nitric oxide could lead to circulatory problems.
Chromosomal Location

Cytogenetic Location: 2q34, which is the long (q) arm of chromosome 2 at position 34

Molecular Location: base pairs 210,477,682 to 210,679,107 on chromosome 2 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- carbamoyl-phosphate synthase 1, mitochondrial
- carbamoyl phosphate synthase I
- carbamoyl-phosphate synthase, mitochondrial precursor
- carbamoylphosphate synthetase I
- CPSase I
- CPSM_HUMAN

Additional Information & Resources

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28CPS1%5BTIAB%5D%29+OR+%28carbamoyl-phosphate+synthetase+1,+mitochondrial%5BTIAB%5D%29+OR+%28carbamoylphosphate+synthetase+I%5BTIAB%5D%29+AND+%28%28Genes%5BMH%5D+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3600+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- CARBAMOYL PHOSPHATE SYNTHETASE I
 http://omim.org/entry/608307
Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_CPS1.html
- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=CPS1%5Bgene%5D
- HGNC Gene Symbol Report
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:1373
- NCBI Gene
- UniProt
 https://www.uniprot.org/uniprot/P31327

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11536261
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9711878
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12955727
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12655559
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11407344
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11388595

Reviewed: February 2013
Published: December 18, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services