COL9A2 gene
collagen type IX alpha 2 chain

Normal Function

The COL9A2 gene provides instructions for making part of a large molecule called type IX collagen. Collagens are a family of proteins that strengthen and support connective tissues, such as skin, bone, cartilage, tendons, and ligaments. In particular, type IX collagen is an important component of cartilage, which is a tough, flexible tissue that makes up much of the skeleton during early development. Most cartilage is later converted to bone, except for the cartilage that continues to cover and protect the ends of bones and is present in the nose and external ears.

Type IX collagen is made up of three proteins that are produced from three distinct genes: one α1(IX) chain, which is produced from the COL9A1 gene, one α2(IX) chain, which is produced from the COL9A2 gene, and one α3(IX) chain, which is produced from the COL9A3 gene. Type IX collagen is more flexible than other types of collagen molecules and is closely associated with type II collagen. Researchers believe that the flexible nature of type IX collagen allows it to act as a bridge that connects type II collagen with other cartilage components. Studies have shown that type IX collagen also interacts with the proteins produced from the MATN3 and COMP genes.

Health Conditions Related to Genetic Changes

Multiple epiphyseal dysplasia

At least five mutations in the COL9A2 gene have been shown to cause dominant multiple epiphyseal dysplasia, a disorder of cartilage and bone development that primarily affects the ends of the long bones in the arms and legs (epiphyses). All of these mutations disrupt how genetic information is spliced together to make the blueprint for producing the α2(IX) chain. These mutations, called splice-site mutations, change one DNA building block (nucleotide) near an area of the gene called exon 3. These mutations in the COL9A2 gene result in the deletion of 12 protein building blocks (amino acids) from the α2(IX) chain. It is not known how mutations in COL9A2 cause the signs and symptoms of dominant multiple epiphyseal dysplasia.

Stickler syndrome

Intervertebral disc disease
Chromosomal Location

Cytogenetic Location: 1p34.2, which is the short (p) arm of chromosome 1 at position 34.2

Molecular Location: base pairs 40,300,487 to 40,317,653 on chromosome 1 (Homo sapiens Updated Annotation Release 109.20190905, GRCh38.p13) (NCBI)

- [Image of chromosome 1 with location highlighted]

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- alpha 2 type IX collagen
- CO9A2_HUMAN
- collagen IX, alpha-2 polypeptide
- collagen type IX alpha 2
- collagen, type IX, alpha 2
- EDM2
- epiphyseal dysplasia, multiple 2

Additional Information & Resources

Educational Resources

 https://www.ncbi.nlm.nih.gov/books/NBK26810/#A3551

 https://www.ncbi.nlm.nih.gov/books/NBK21582/

Clinical Information from GeneReviews

- Multiple Epiphyseal Dysplasia, Dominant
 https://www.ncbi.nlm.nih.gov/books/NBK1123

- Stickler Syndrome
 https://www.ncbi.nlm.nih.gov/books/NBK1302
Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28COL9A2%5BTIAB%5D%29+OR+%28EDM2%5BTIAB%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+2160+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

• COLLAGEN, TYPE IX, ALPHA-2
 http://omim.org/entry/120260

• INTERVERTEBRAL DISC DISEASE
 http://omim.org/entry/603932

Research Resources

• Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_COL9A2.html

• ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=COL9A2%5Bgene%5D

• HGNC Gene Symbol Report

• Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:1298

• NCBI Gene

• UniProt
 https://www.uniprot.org/uniprot/Q14055

Sources for This Summary

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16586133
Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2267527/

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16371896

Reviewed: January 2013
Published: December 10, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services