collagen type IX alpha 2

The COL9A2 gene provides instructions for making part of a large molecule called type IX collagen. Collagens are a family of proteins that strengthen and support connective tissues, such as skin, bone, cartilage, tendons, and ligaments. In particular, type IX collagen is an important component of cartilage, which is a tough, flexible tissue that makes up much of the skeleton during early development. Most cartilage is later converted to bone, except for the cartilage that continues to cover and protect the ends of bones and is present in the nose and external ears.

Type IX collagen is made up of three proteins that are produced from three distinct genes: one α1(IX) chain, which is produced from the COL9A1 gene, one α2(IX) chain, which is produced from the COL9A2 gene, and one α3(IX) chain, which is produced from the COL9A3 gene. Type IX collagen is more flexible than other types of collagen molecules and is closely associated with type II collagen. Researchers believe that the flexible nature of type IX collagen allows it to act as a bridge that connects type II collagen with other cartilage components. Studies have shown that type IX collagen also interacts with the proteins produced from the MATN3 and COMP genes.

At least five mutations in the COL9A2 gene have been shown to cause dominant multiple epiphyseal dysplasia, a disorder of cartilage and bone development that primarily affects the ends of the long bones in the arms and legs (epiphyses). All of these mutations disrupt how genetic information is spliced together to make the blueprint for producing the α2(IX) chain. These mutations, called splice-site mutations, change one DNA building block (nucleotide) near an area of the gene called exon 3. These mutations in the COL9A2 gene result in the deletion of 12 protein building blocks (amino acids) from the α2(IX) chain. It is not known how mutations in COL9A2 cause the signs and symptoms of dominant multiple epiphyseal dysplasia.

Genetics Home Reference provides information about Stickler syndrome.

At least one mutation in the COL9A2 gene increases an individual's risk for intervertebral disc disease, one of the most common sources of lower back pain. This mutation substitutes the amino acid tryptophan for the amino acid glutamine at position 326 in the α2(IX) chain. This mutation is commonly known as the Trp2 allele and is sometimes written as Glu326Trp. The amino acid tryptophan is rarely found in collagen molecules, and its inclusion likely alters the structure or function of type IX collagen.

Cytogenetic Location: 1p33-p32, which is the short (p) arm of chromosome 1 between positions 33 and 32

Molecular Location: base pairs 40,300,487 to 40,317,653 on chromosome 1 (Homo sapiens Annotation Release 108, GRCh38.p7) (NCBI)

Cytogenetic Location: 1p33-p32, which is the short (p) arm of chromosome 1 between positions 33 and 32
  • alpha 2 type IX collagen
  • collagen IX, alpha-2 polypeptide
  • collagen, type IX, alpha 2
  • EDM2
  • epiphyseal dysplasia, multiple 2